• Title/Summary/Keyword: pixel classifying

Search Result 36, Processing Time 0.032 seconds

MODIS Data-based Crop Classification using Selective Hierarchical Classification (선택적 계층 분류를 이용한 MODIS 자료 기반 작물 분류)

  • Kim, Yeseul;Lee, Kyung-Do;Na, Sang-Il;Hong, Suk-Young;Park, No-Wook;Yoo, Hee Young
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.235-244
    • /
    • 2016
  • In large-area crop classification with MODIS data, a mixed pixel problem caused by the low resolution of MODIS data has been one of main issues. To mitigate this problem, this paper proposes a hierarchical classification algorithm that selectively classifies the specific crop class of interest by using their spectral characteristics. This selective classification algorithm can reduce mixed pixel effects between crops and improve classification performance. The methodological developments are illustrated via a case study in Jilin city, China with MODIS Normalized Difference Vegetation Index (NDVI) and Near InfRared (NIR) reflectance datasets. First, paddy fields were extracted from unsupervised classification of NIR reflectance. Non-paddy areas were then classified into corn and bean using time-series NDVI datasets. In the case study result, the proposed classification algorithm showed the best classification performance by selectively classifying crops having similar spectral characteristics, compared with traditional direct supervised classification of time-series NDVI and NIR datasets. Thus, it is expected that the proposed selective hierarchical classification algorithm would be effectively used for producing reliable crop maps.

Object-Based Video Segmentation Using Spatio-temporal Entropic Thresholding and Camera Panning Compensation (시공간 엔트로피 임계법과 카메라 패닝 보상을 이용한 객체 기반 동영상 분할)

  • 백경환;곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • This paper is related to a morphological segmentation method for extracting the moving object in video sequence using global motion compensation and two-dimensional spatio-temporal entropic thresholding. First, global motion compensation is performed with camera panning vector estimated in the hierarchical pyramid structure constructed by wavelet transform. Secondly, the regions with high possibility to include the moving object between two consecutive frames are extracted block by block from the global motion compensated image using two-dimensional spatio-temporal entropic thresholding. Afterwards, the LUT classifying each block into one among changed block, uncertain block, stationary block according to the results classified by two-dimensional spatio-temporal entropic thresholding is made out. Next, by adaptively selecting the initial search layer and the search range referring to the LUT, the proposed HBMA can effectively carry out fast motion estimation and extract object-included region in the hierarchical pyramid structure. Finally, after we define the thresholded gradient image in the object-included region, and apply the morphological segmentation method to the object-included region pixel by pixel and extract the moving object included in video sequence. As shown in the results of computer simulation, the proposed method provides relatively good segmentation results for moving object and specially comes up with reasonable segmentation results in the edge areas with lower contrast.

  • PDF

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

Ultrasonic Image Analysis Using GLCM in Diffuse Thyroid Disease (미만성 갑상샘 질환에서 GLCM을 이용한 초음파 영상 분석)

  • Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.473-479
    • /
    • 2021
  • The diagnostic criteria for diffuse thyroid disease are ambiguous and there are many errors due to the subjective diagnosis of experts. Also, studies on ultrasound imaging of thyroid nodules have been actively conducted, but studies on diffuse thyroid disease are insufficient. In this study, features were extracted by applying the GLCM algorithm to ultrasound images of normal and diffuse thyroid disease, and quantitative analysis was performed using the extracted feature values. Using the GLCM algorithm for thyroid ultrasound images of patients diagnosed at W hospital, 199 normal cases, 132 mild cases, and 99 moderate cases, a region of interest (50×50 pixel) was set for a total of 430 images, and Autocorrelation, Sum of squares, sum average, sum variance, cluster prominence, and energy were analyzed using six parameters. As a result, in autocorrelation, sum of squares, sum average, and sum variance four parameters, Normal, Mild, and Moderate were distinguished with a high recognition rate of over 90%. This study is valuable as a criterion for classifying the severity of diffuse thyroid disease in ultrasound images using the GLCM algorithm. By applying these parameters, it is expected that errors due to visual reading can be reduced in the diagnosis of thyroid disease and can be utilized as a secondary means of diagnosing diffuse thyroid disease.

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

A Study on Multiple Filter for Mixed Noise Removal (복합잡음 제거를 위한 다중 필터에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2029-2036
    • /
    • 2017
  • Currently, the demand for multimedia services is increasing with the rapid development of the digital age. Image data is corrupted by various noises and typical noise is mainly AWGN, salt and pepper noise and the complex noise that these two noises are mixed. Therefore, in this paper, the noise is processed by classifying AWGN and salt and pepper noise through noise judgment. In the case of AWGN, the outputs of spatial weighted filter and pixel change weighted filter are composed and processed, and the composite weights are applied differently according to the standard deviation of the local mask. In the case of salt and pepper noise, cubic spline interpolation and local histogram weighted filters are composed and processed. This study suggested the multiple image restoration filter algorithm which is processed by applying different composite weights according to the salt and pepper noise density of the local mask.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF

Vehicle Detection Scheme Based on a Boosting Classifier with Histogram of Oriented Gradient (HOG) Features and Image Segmentation] (HOG 특징 및 영상분할을 이용한 부스팅분류 기반 자동차 검출 기법)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.955-961
    • /
    • 2010
  • In this paper, we describe a study of a vehicle detection method based on a Boosting Classifier which uses Histogram of Oriented Gradient (HOG) features and Image Segmentation techniques. An input image is segmented by means of a split and merge algorithm. Then, the two largest segmented regions are removed in order to reduce the search region and speed up processing time. The HOG features are then calculated for each pixel in the search region. In order to detect the vehicle region we used the AdaBoost (adaptive boost) method, which is well known for classifying samples with two classes. To evaluate the performance of the proposed method, 537 training images were used to train and learn the classifier, followed by 500 non-training images to provide the recognition rate. From these experiments we were able to detect the proper image 98.34% of the time for the 500 non-training images. In conclusion, the proposed method can be used for detecting the location of a vehicle in an intelligent vehicle control system.