• 제목/요약/키워드: pixel classifying

검색결과 36건 처리시간 0.027초

Depth Up-Sampling via Pixel-Classifying and Joint Bilateral Filtering

  • Ren, Yannan;Liu, Ju;Yuan, Hui;Xiao, Yifan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3217-3238
    • /
    • 2018
  • In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).

효율적인 시공간 보간을 통한 움직임 기반의 디인터레이싱 기법 (A motion-adaptive de-interlacing method using an efficient spatial and temporal interpolation)

  • 이성규;이동호
    • 대한전자공학회논문지SP
    • /
    • 제38권5호
    • /
    • pp.556-566
    • /
    • 2001
  • 본 논문에서는 EBMF(Edge Based Median Filter)와 3-Step AMPDF(Adaptive Minimum Pixel Difference Filter) 기반의 움직임 적응 디인터레이싱 알고리즘을 제안 한다. 움직임 적응 방법에서 중요한 요소인 motion missing에 의한 에러를 방지하기 위해 입력 영상을 4 가지 유형으로 구분하여 각 영상에 따라 다른 임계 값을 사용하여 정확한 화소 값을 보간 하는 AMPDF를 사용하며 움직이는 대각선 에지의 효과적인 보간을 위하여 에지에 따라 가변적인 후보 픽셀을 선택하는 EBMF를 사용하여 성능을 향상시켰다. 또한 성능을 높이기 위해 입력되는 영상을 움직임 영역, 정지 영역, 경계 영역으로 나누어 적응적으로 보간 하였으며 모의 실험을 통해 기존의 방법들에 비해 성능이 우수함을 보였다.

  • PDF

Method for classification and delimitation of forest cover using IKONOS imagery

  • Lee, W.K.;Chong, J.S.;Cho, H.K.;Kim, S.W.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.198-200
    • /
    • 2003
  • This study proved if the high resolution satellite imagery of IKONOS is suitable for preparing digital forest cover map. Three methods, the pixel based classification with maximum likelihood (PML), the segment based classification with majority principle(SMP), and the segment based classification with maximum likelihood(SML), were applied to classify and delimitate forest cover of IKONOS imagery taken in May 2000 in a forested area in the central Korea. The segment-based classification was more suitable for classifying and deliminating forest cover in Korea using IKONOS imagery. The digital forest cover map in which each class is delimitated in the form of a polygon can be prepared on the basis of the segment-based classification.

  • PDF

모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계 (Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera)

  • 송진근;하주영;박정환;최원태;강봉순
    • 융합신호처리학회논문지
    • /
    • 제8권4호
    • /
    • pp.237-243
    • /
    • 2007
  • 본 논문은 모바일 카메라 화질 개선을 위한 실시간 불량 화소(Dead pixel) 검출 및 보정 시스템에 대해 제안하고 있다. 영상 입력장치인 CIS(CMOS Image Sensor)는 소형화, 저전력, 비용절감의 효과로 각광받고 있다. 하지만 이미지 센서와 결합된 불량 화소 보정 장치에 관한 기존 방법에 있어서, 연속된 불량 화소들을 검출하지 못 하거나, 정상화소임에도 불구하고 불량 화소로 분류하여 영상이 훼손되는 경우가 발생한다. 제안된 알고리즘은 불량 화소를 핫 픽셀(Hot pixel)과 콜드 픽셀(Cold pixel)로 분류하여, 라인 검출방법과 $5{\times}5$ 창 검출 방법을 순차적으로 처리하여, 불량화소의 특성에 따라 검출 및 보정하는 방법을 제안한다. 라인 검출 알고리즘은 수평 저주파 영역의 불량화소를 검출한다. 그리고 $5{\times}5$창 검출 알고리즘은 수직, 대각 저주파 영역과 고주파 영역에 대한 불량 화소를 검출한다. 제안된 알고리즘은 시뮬레이션 결과, 99%의 높은 검출율을 보여주고 있다. 그리고 Verilog-HDL를 사용하여 구현하였고 Synopsys의 Design Analyzer와 TSMC 0.25um ASIC library로 합성하였으며, 총 Gate counts는 23K로 낮은 하드웨어 복잡도를 가진다.

  • PDF

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • 제26권2호
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

디컨볼루션 픽셀층 기반의 도로 이미지의 의미론적 분할 (Deconvolution Pixel Layer Based Semantic Segmentation for Street View Images)

  • Wahid, Abdul;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.515-518
    • /
    • 2019
  • Semantic segmentation has remained as a challenging problem in the field of computer vision. Given the immense power of Convolution Neural Network (CNN) models, many complex problems have been solved in computer vision. Semantic segmentation is the challenge of classifying several pixels of an image into one category. With the help of convolution neural networks, we have witnessed prolific results over the time. We propose a convolutional neural network model which uses Fully CNN with deconvolutional pixel layers. The goal is to create a hierarchy of features while the fully convolutional model does the primary learning and later deconvolutional model visually segments the target image. The proposed approach creates a direct link among the several adjacent pixels in the resulting feature maps. It also preserves the spatial features such as corners and edges in images and hence adding more accuracy to the resulting outputs. We test our algorithm on Karlsruhe Institute of Technology and Toyota Technologies Institute (KITTI) street view data set. Our method achieves an mIoU accuracy of 92.04 %.

영역 구분을 통한 다시점 영상의 깊이맵 손상 복구 기법 (Region-Based Error Concealment of Depth Map in Multiview Video)

  • 김우연;신지태;오병태
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2530-2538
    • /
    • 2015
  • 깊이맵은 색채 영상과 달리 색상 정보가 아닌 깊이 정보가 픽셀 값을 이루고 있어서 색차가 크더라도 비슷한 거리에 있으면 유사한 픽셀 값으로 나타난다. 또한 색채 영상은 미세한 영역에서 단계적으로 값이 변하면서 대상의 윤곽을 나타내지만 깊이맵은 픽셀 값이 계단식으로 변하여 픽셀 값이 변하는 지점에서 급변하는 경향이 있다. 이러한 깊이맵의 특성상 경계 영역과 그 외의 영역으로 크게 영상의 영역을 구분 할 수 있고, 전송 시 나타나는 오류에 대해 각 영역에 효과적으로 적용 될 수 있는 오류 은닉 방법이 필요하다. 본 연구에서는 깊이맵의 경계 방향에 따라 영역을 구분하고 각 영역의 값이 변화하는 방향성에 맞추어 적응적으로 오류가 은닉 될 수 있는 방법을 적용하여 깊이맵을 복구한다. 복구된 깊이맵은 다시점 영상과 함께 합성하여 새로운 중간 시점 영상을 만들고 이를 객관적 화질평가 방법을 통해 평가한다.

강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델 (Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races)

  • 박경미;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제9권5호
    • /
    • pp.1-12
    • /
    • 2009
  • 올바른 피부색 검출은 사람의 얼굴 검출 및 동작 분석에서 매우 중요한 전처리과정에 속한다. 피부 검출은 일반적으로 화소의 칼라 공간을 Non-RGB로 변형하고, 피부색의 조명 요소를 제거한 다음 피부색 분포 모델에 의해 Skin과 Non-Skin으로 분류하는 3단계로 진행된다. 이는 피부색 검출이 칼라 공간, 조명 요소의 존재 여부, 피부 모델링 방법에 따라 수행 성능에 많은 영향을 받기 때문이다. 본 연구에서는 조명 조건에 따라 피부색 모델의 범위에 차이가 있다는 사실에 기초하여 다양한 조명 조건과 복잡한 배경을 가진 영상에서 효과적으로 다인종의 피부색을 분류해내 기 위한 3차원 피부색 모델을 제시하고자 한다. 제안된 피부색 모델은 화소의 칼라 공간을 YCbCr공간으로 변형하고, 각 요소(Y, Cb, Cr) 값에 의한 3차원 피부색 모델을 형성한다. 다인종의 피부색을 함께 분할하기 위해 인종(백인, 흑인, 황인)별 피부색 모델을 먼저 생성한 후 각각의 모델에서 피부색 확률에 따라 결합한 다인종을 위한 통합 모델을 생성하였다. 또한 우리는 적은 양의 훈련 데이터로 피부색 영역을 올바르게 검출할 수 있도록 여러 단계의 피부색 영역을 설정하였다.

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea

  • Ehsan Rahimi;Chuleui Jung
    • 대한원격탐사학회지
    • /
    • 제40권2호
    • /
    • pp.179-190
    • /
    • 2024
  • This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.

TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘 (Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic)

  • 구은혜;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.