• 제목/요약/키워드: pixel based classification

검색결과 173건 처리시간 0.024초

대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식 (Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster)

  • 한수희;송정헌
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.445-452
    • /
    • 2019
  • 본 연구에서는 대용량 위성영상의 무감독분류를 위해 k-means clustering 알고리즘의 병렬처리 코드를 개발하여 PC-cluster에서 구현하였다. 이를 위해 OpenMP (Open Multi-Processing)를 기반으로 CPU (Central Processing Unit)의 다중코어를 이용하는 intra-node 코드와 message passing interface를 기반으로 PC-cluster를 이용하는 inter-nodes 코드, 그리고 이 둘을 병용하는 hybrid 코드를 구현하였다. 본 연구에 사용한 PC-cluster는 한 대의 마스터 노드와 여덟 대의 슬래이브 노드로 구성되어 있고 각 노드에는 여덟 개의 다중코어가 장착되어 있다. PC-cluster에는 Microsoft Windows와 Canonical Ubuntu의 두 가지 운영체제를 설치하여 병렬처리 성능을 비교하였다. 실험에 사용한 자료는 두 가지 다중분광 위성영상으로서 중용량인 LANDSAT 8 OLI (Operational Land Imager) 영상과 대용량인 Sentinel 2A 영상이다. 병렬처리의 성능을 평가하기 위하여 speedup과 efficiency를 측정한 결과 전반적으로 speedup은 N/2 이상, efficiency는 0.5 이상으로 나타났다. Microsoft Windows와 Canonical Ubuntu를 비교한 결과 Ubuntu가 2-3배의 빠른 결과를 나타내었다. 순차처리와 병렬처리 결과가 일치하는지 확인하기 위해 각 클래스의 밴드별 중심값과 분류된 화소의 수를 비교하고 결과 영상간 화소대 화소 비교도 수행하였다. Intra-node 코드를 구현할 때에는 OpenMP에 의한 false sharing이 발생하지 않도록 주의해야 하고, PC-cluster에서 대용량 위성영상을 처리하기 위해서는 파일 I/O에 의한 성능저하를 줄일 수 있도록 코드 및 하드웨어를 설계해야 함을 알 수 있었다. 또한 PC-cluster에 설치된 운영체제에 따라서도 성능 차이가 발생함을 알 수 있었다.

영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출 (Detection of Text Candidate Regions using Region Information-based Genetic Algorithm)

  • 오준택;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.70-77
    • /
    • 2008
  • 본 논문은 화소 단위의 정보가 아닌 분할된 영역들의 정보를 기반으로 유전자 알고리즘을 이용한 텍스트 후보영역 검출방안을 제안한다. 먼저, 영상분할을 수행하기 위해 색상별 화소분류와 비동질적인 군집의 감소를 위한 영역 단위의 재분류 알고리즘을 수행한다. 색상별 화소분류에 이용되는 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘은 공간정보를 추가한 개선된 FCM 알고리즘으로써, 잡음에 강건한 특징을 가진다. EWFCM 알고리즘에 의해 분류된 화소들의 군집정보를 기반으로 수행되는 영역 단위의 재분류는 화소나 군집 단위의 재분류에 비해 효과적으로 영상에 존재하는 비동질적인 군집들을 감소시킬 수 있다. 그리고 텍스트 후보영역 검출은 분할된 영역들로부터 추출한 방향성 에지 성분에 대한 분산값 및 에너지, 크기, 개수 등의 정보를 기반으로 유전자알고리즘에 의해 수행된다. 이는 화소 단위의 정보를 이용한 방법보다 더 명확한 텍스트 영역정보를 획득할 수 있으며, 향후 자동문자인식에서 좀 더 손쉽게 이용될 수 있다. 실험 결과 제안한 분할방법은 기존 방법이나 화소나 군집 기반의 재분류보다 좋은 결과를 보였으며, 텍스트 후보영역 검출에서도 화소 단위의 정보를 이용한 기존 방법보다 더 좋은 결과를 보여 제안방법의 유효성을 확인하였다.

1차원 메디안 필터 기반 문서영상 영역해석 (The Region Analysis of Document Images Based on One Dimensional Median Filter)

  • 박승호;장대근;황찬식
    • 대한전자공학회논문지SP
    • /
    • 제40권3호
    • /
    • pp.194-202
    • /
    • 2003
  • 인쇄문서를 전자문서로 자동변환하기 위해서는 문서영상 영역해석과 문자인식 기술이 필요하다. 이들 중 영역해석은 문서영상을 세부 영역으로 분할하고, 분할한 영역을 문자, 그림, 표 등의 형태로 분류한파. 그러나 문자와 그림의 일부는 크기, 밀도, 화소분포의 복잡도가 비슷하여 정확한 분류가 어렵다. 따라서 영역해석에서의 오 분류는 자동변환을 어렵게 만드는 주된 원인이 된다. 본 논문에서는 분서영상을 문자와 그림영역으로 분할하는 영역해석 방법을 제안한다. 문자와 그림의 분류는 1차원 메디안 필터링을 기반으로 한 방법을 이용하여 언급한 문제점을 해결한다. 또한 메디안 필터링에 의해 발생하는 볼드체 문자와 그래프나 표와 같은 그림영역의 오 분류 문제를 표피 제거 필터와 문자의 최대크기를 이용하여 해결한다. 따라서 상용제품을 포함한 기존의 영역해석 방법보다 그 성능이 우수하다.

악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발 (Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware)

  • 박지현;김태옥;신유림;김지연;최은정
    • 한국멀티미디어학회논문지
    • /
    • 제23권5호
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템 (Face classification and analysis based on geometrical feature of face)

  • 정광민;김정훈
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1495-1504
    • /
    • 2012
  • 본 논문에서는 얼굴의 기하학적 특징정보를 기반으로 하여 얼굴의 특징자인 눈썹, 눈, 입, 턱선의 분류 및 해석 알고리즘을 제안하였다. 먼저, 얼굴 특징정보의 분류와 해석을 하기위한 전처리 과정으로 얼굴 특징자들의 눈, 코, 입, 눈썹, 턱선을 추출하기위해 얼굴 특징자 추출 알고리즘을 적용하여 얼굴 특징자들을 추출하게 된다. 추출한 얼굴 특징자들의 형태 정보와 모양정보 및 특징자들 간의 거리비율을 검출하여 이를 평가함수화 하고, 3가지의 눈 타입, 9가지의 입 타입, 12가지의 눈썹 타입 그리고 4가지의 턱선 타입의 분류를 하게 된다. 이렇게 분류된 얼굴 특징자들을 이용하여 얼굴을 해석하게 된다. 얼굴해석 알고리즘은 각각의 특징자들에 대한 고유의 특징자들의 내부구간의 화소분포 정보와 기울기 정보를 가지고 있다. 따라서 특징자들 간의 정보를 이용하여 얼굴을 해석할 수 있었다.

시멘틱 세그멘테이션을 활용한 이미지 오브젝트의 효율적인 영역 추론 (Efficient Inference of Image Objects using Semantic Segmentation)

  • 임헌영;이유림;지민규;고명현;김학동;김원일
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.67-76
    • /
    • 2019
  • 본 연구에서는 다중 라벨링이 되어 있는 이미지 데이터를 대상으로 시멘틱 세그멘테이션을 활용한 효율적인 오브젝트별 영역 분류 기법을 연구한다. 이미지 데이터에 포함된 색상 정보, 윤곽선, 명암, 채도 등 다양한 픽셀 단위 정보와 프로세싱 기법뿐만 아니라 각 오브젝트들이 위치한 세부 영역을 의미 있는 단위로 추출하여 추론 결과에 반영하는 실험을 진행하고 그 결과에 대해 논의한다. 이미지 분류에서 훌륭한 성능을 검증받은 뉴럴 네트워크를 활용하여 비정형성이 심하고 다양한 클래스 오브젝트가 포함된 이미지 데이터를 대상으로 어떤 오브젝트가 어디에 위치하였는지 파악하는 작업을 진행한다. 이러한 연구를 기반으로 향후 다양한 오브젝트가 포함된 복잡한 이미지의 실시간 세부 영역 분류를 진행하는 인공지능 서비스 제공을 목표로 한다.

한글 외곽선 폰트의 자소 분할 (Hangul Component Decomposition in Outline Fonts)

  • 구상옥;정순기
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권4호
    • /
    • pp.11-21
    • /
    • 2011
  • 본 논문은 한글 외곽선 폰트를 입력으로 글자의 초성, 중성, 종성 요소(컴포넌트)를 통계적-구조적 정보를 이용하여 분할하는 방법을 제안한다. 한 폰트 내에서 한글 컴포넌트는 통계적으로 일정한 위치에 나타나며, 각 컴포넌트를 이루는 획 간의 관계는 그 컴포넌트의 구조적 특징을 나타낸다. 우리는 먼저 각 컴포넌트의 위치를 저장하는 컴포넌트 히스토그램을 생성하여 컴포넌트 위치에 관한 통계 정보를 저장하였다. 그리고 글자의 구조적 정보를 반영하기 위해 픽셀의 방향성 확률을 기반으로 픽셀클러스터를 만들고, 클러스터의 위치, 방향 및 크기, 클러스터간 인접성 정보를 이용하여 후보 획을 추출하였다. 마지막으로 릴렉세이션 레이블링을 통해 후보 획 집합과 미리 정의된 글자 모델 간의 가장 적합한 구조적 매치를 구하였다. 본 논문에서 제안한 컴포넌트 분할방법은 한글 폰트의 조형적 특징에 관한 연구 및 이를 활용한 폰트분류 빛 폰트검색에 활용될 수 있다.

4차 산업혁명시대 ; 무용공연예술의 현실-가상미디어 연결시스템 분류 및 사례연구 (The Fourth Industrial Revolution ; A Classification of Reality-Virtual Media Connection System and Case Studies on Dance Performing Arts)

  • 조성희;김은정
    • 한국콘텐츠학회논문지
    • /
    • 제18권9호
    • /
    • pp.544-554
    • /
    • 2018
  • 본 연구는 4차 산업혁명시대의 무용분야의 현실-가상 미디어 연결 시스템을 분류하고 무용작품에서의 현실-가상 미디어 연결 시스템 활용을 사례 분석한 문헌연구이다. 본 연구의 대상은 인터렉티브 미디어 무용공연으로 제한하여 청키 무브(Chunky Move)의 "Glow"(2006), 남영호 "S.U.N"(2011)와 "달항아리"(2013), 아드리안 앤 클레이레(ADRIEN M & CLAIRE B)의 "PIXEL"(2014), 미다스 프로젝트(Midas Project)의 "Midas Space"(2011)에서 사용된 현실-가상미디어 연결시스템의 사례들을 연구하였다. 연구 결과 첫째, 현재까지 이루어진 무용공연에서의 현실-가상미디어연결시스템은 크게 동작 트레킹 시스템과 프로젝션 맵핑으로 구성되었다. 둘째, 사례 연구에서는 작품별로 다양하고 독창적인 현실-가상미디어 연결시스템이 고안되었고, 이 시스템은 움직임과 영향을 주고 받았으며, 시스템은 작품의 주제와 밀접한 관계를 맺었다. 따라서 앞으로 인공지능의 개발을 통해 현실-가상미디어연결시스템의 적극적인 사용, 모션 트레킹이 가능한 사물인터넷의 발달 가능성을 인지, 무용가와 엔지니어 간의 소통, 사례연구를 추가적으로 진행하여야 한다.

딥러닝 기반의 식생 모니터링 가능성 평가 (Evaluation of the Feasibility of Deep Learning for Vegetation Monitoring)

  • 김동우;손승우
    • 한국환경복원기술학회지
    • /
    • 제26권6호
    • /
    • pp.85-96
    • /
    • 2023
  • This study proposes a method for forest vegetation monitoring using high-resolution aerial imagery captured by unmanned aerial vehicles(UAV) and deep learning technology. The research site was selected in the forested area of Mountain Dogo, Asan City, Chungcheongnam-do, and the target species for monitoring included Pinus densiflora, Quercus mongolica, and Quercus acutissima. To classify vegetation species at the pixel level in UAV imagery based on characteristics such as leaf shape, size, and color, the study employed the semantic segmentation method using the prominent U-net deep learning model. The research results indicated that it was possible to visually distinguish Pinus densiflora Siebold & Zucc, Quercus mongolica Fisch. ex Ledeb, and Quercus acutissima Carruth in 135 aerial images captured by UAV. Out of these, 104 images were used as training data for the deep learning model, while 31 images were used for inference. The optimization of the deep learning model resulted in an overall average pixel accuracy of 92.60, with mIoU at 0.80 and FIoU at 0.82, demonstrating the successful construction of a reliable deep learning model. This study is significant as a pilot case for the application of UAV and deep learning to monitor and manage representative species among climate-vulnerable vegetation, including Pinus densiflora, Quercus mongolica, and Quercus acutissima. It is expected that in the future, UAV and deep learning models can be applied to a variety of vegetation species to better address forest management.