• Title/Summary/Keyword: pixel based classification

Search Result 176, Processing Time 0.032 seconds

Class 1·3 Vehicle Classification Using Deep Learning and Thermal Image (열화상 카메라를 활용한 딥러닝 기반의 1·3종 차량 분류)

  • Jung, Yoo Seok;Jung, Do Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.96-106
    • /
    • 2020
  • To solve the limitation of traffic monitoring that occur from embedded sensor such as loop and piezo sensors, the thermal imaging camera was installed on the roadside. As the length of Class 1(passenger car) is getting longer, it is becoming difficult to classify from Class 3(2-axle truck) by using an embedded sensor. The collected images were labeled to generate training data. A total of 17,536 vehicle images (640x480 pixels) training data were produced. CNN (Convolutional Neural Network) was used to achieve vehicle classification based on thermal image. Based on the limited data volume and quality, a classification accuracy of 97.7% was achieved. It shows the possibility of traffic monitoring system based on AI. If more learning data is collected in the future, 12-class classification will be possible. Also, AI-based traffic monitoring will be able to classify not only 12-class, but also new various class such as eco-friendly vehicles, vehicle in violation, motorcycles, etc. Which can be used as statistical data for national policy, research, and industry.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Intensity Gradient filter and Median Filter based Video Sequence Deinterlacing Using Texture Detection (텍스쳐 감지를 이용한 화소값 기울기 필터 및 중간값 필터 기반의 비디오 시퀀스 디인터레이싱)

  • Kang, Kun-Hwa;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.371-379
    • /
    • 2009
  • In this paper, we proposed new de-interlacing algorithm for video data using intensity gradient filter and median filter with texture detection in the image block. We first introduce the texture detection. According to texture detection, the current region is determined into smooth region or texture region. In case that the smooth region interpolated by median filter. In addition, in case of the texture region, we calculate missing pixel value using intensity gradient filter. Therefore, we analyze the local region feature using the texture detection and classify each missing pixel into two categories. And then, based on the classification result, a different de-interlacing algorithm is activated in order to obtain the best performance. Experimental results show that the proposed algorithm performs well with a variety of moving sequences compared with conventional intra-field method in the literature.

Comparison of object oriented and pixel based classification of satellite data for effective management of natural resources (천연 자원의 효율적인 관리를 위한 위성자료의 객체 및 픽셀기반의 비교)

  • Jayakumar, S.;Heo, Joon;Sohn, Hong-Gyoo;Lee, Jung-Bin;Kim, Jong-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.215-218
    • /
    • 2007
  • 이 논문은 고해상도 Quickbird 영상을 이용하여 세부레벨계획을 위한 토지피복분류를 수행하였으며 고해상도 영상을 이용한 토지피복분류를 위하여 객체기반분류와 ISODATA 기법을 적용하였다. 객체기반분류는 eCognition 소프트웨어를 사용하였으며 ISODATA 기법의 토지피복분류 결과와 비교분석을 수행하였다. 연구 대상지역은 인도의 Sukkalampatti이라 하는 작은 유역을 대상으로 연구를 진행하였다. 고해상도 영상의 사용으로 토지피복분류에 있어서 공간 해상도에 따른 토지피복의 세부레벨분류 정확도를 향상 시킬 수 있는 이점을 확인 할 수 있으며 또한, 객체기반분류와 ISODATA 기법의 분류 결과는 eCognition을 사용한 객체기반 토지피복분류결과가 ISODATA의 픽셀기반의 분류방법보다 높은 정확도를 보였다.

  • PDF

Automatic Colorectal Polyp Detection in Colonoscopy Video Frames

  • Geetha, K;Rajan, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4869-4873
    • /
    • 2016
  • Colonoscopy is currently the best technique available for the detection of colon cancer or colorectal polyps or other precursor lesions. Computer aided detection (CAD) is based on very complex pattern recognition. Local binary patterns (LBPs) are strong illumination invariant texture primitives. Histograms of binary patterns computed across regions are used to describe textures. Every pixel is contrasted relative to gray levels of neighbourhood pixels. In this study, colorectal polyp detection was performed with colonoscopy video frames, with classification via J48 and Fuzzy. Features such as color, discrete cosine transform (DCT) and LBP were used in confirming the superiority of the proposed method in colorectal polyp detection. The performance was better than with other current methods.

Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic (TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

Object-based classification for building detection using VHR image and Lidar data (고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지)

  • Yoon Yeo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF

Interpretation of Real Information-missing Patch of Remote Sensing Image with Kriging Interpolation of Spatial Statistics

  • Yiming, Feng;Xiangdong, Lei;Yuanchang, Lu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1479-1481
    • /
    • 2003
  • The aim of this paper was mainly to interpret the real information-missing patch of image by using the kriging interpolation technology of spatial statistics. The TM Image of the Jingouling Forest Farm of Wangqing Forestry Bureau of Northeast China on 1 July 1997 was used as the tested material in this paper. Based on the classification for the TM image, the information pixel-missing patch of image was interpolated by the kriging interpolation technology of spatial statistics theory under the image treatment software-ERDAS and the geographic information system software-Arc/Info. The interpolation results were already passed precise examination. This paper would provide a method and means for interpreting the information-missing patch of image.

  • PDF

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF