• Title/Summary/Keyword: pixel based classification

Search Result 173, Processing Time 0.03 seconds

Intensity Gradient filter and Median Filter based Video Sequence Deinterlacing Using Texture Detection (텍스쳐 감지를 이용한 화소값 기울기 필터 및 중간값 필터 기반의 비디오 시퀀스 디인터레이싱)

  • Kang, Kun-Hwa;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.371-379
    • /
    • 2009
  • In this paper, we proposed new de-interlacing algorithm for video data using intensity gradient filter and median filter with texture detection in the image block. We first introduce the texture detection. According to texture detection, the current region is determined into smooth region or texture region. In case that the smooth region interpolated by median filter. In addition, in case of the texture region, we calculate missing pixel value using intensity gradient filter. Therefore, we analyze the local region feature using the texture detection and classify each missing pixel into two categories. And then, based on the classification result, a different de-interlacing algorithm is activated in order to obtain the best performance. Experimental results show that the proposed algorithm performs well with a variety of moving sequences compared with conventional intra-field method in the literature.

Comparison of object oriented and pixel based classification of satellite data for effective management of natural resources (천연 자원의 효율적인 관리를 위한 위성자료의 객체 및 픽셀기반의 비교)

  • Jayakumar, S.;Heo, Joon;Sohn, Hong-Gyoo;Lee, Jung-Bin;Kim, Jong-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.215-218
    • /
    • 2007
  • 이 논문은 고해상도 Quickbird 영상을 이용하여 세부레벨계획을 위한 토지피복분류를 수행하였으며 고해상도 영상을 이용한 토지피복분류를 위하여 객체기반분류와 ISODATA 기법을 적용하였다. 객체기반분류는 eCognition 소프트웨어를 사용하였으며 ISODATA 기법의 토지피복분류 결과와 비교분석을 수행하였다. 연구 대상지역은 인도의 Sukkalampatti이라 하는 작은 유역을 대상으로 연구를 진행하였다. 고해상도 영상의 사용으로 토지피복분류에 있어서 공간 해상도에 따른 토지피복의 세부레벨분류 정확도를 향상 시킬 수 있는 이점을 확인 할 수 있으며 또한, 객체기반분류와 ISODATA 기법의 분류 결과는 eCognition을 사용한 객체기반 토지피복분류결과가 ISODATA의 픽셀기반의 분류방법보다 높은 정확도를 보였다.

  • PDF

Automatic Colorectal Polyp Detection in Colonoscopy Video Frames

  • Geetha, K;Rajan, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4869-4873
    • /
    • 2016
  • Colonoscopy is currently the best technique available for the detection of colon cancer or colorectal polyps or other precursor lesions. Computer aided detection (CAD) is based on very complex pattern recognition. Local binary patterns (LBPs) are strong illumination invariant texture primitives. Histograms of binary patterns computed across regions are used to describe textures. Every pixel is contrasted relative to gray levels of neighbourhood pixels. In this study, colorectal polyp detection was performed with colonoscopy video frames, with classification via J48 and Fuzzy. Features such as color, discrete cosine transform (DCT) and LBP were used in confirming the superiority of the proposed method in colorectal polyp detection. The performance was better than with other current methods.

Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic (TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

Object-based classification for building detection using VHR image and Lidar data (고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지)

  • Yoon Yeo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF

Interpretation of Real Information-missing Patch of Remote Sensing Image with Kriging Interpolation of Spatial Statistics

  • Yiming, Feng;Xiangdong, Lei;Yuanchang, Lu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1479-1481
    • /
    • 2003
  • The aim of this paper was mainly to interpret the real information-missing patch of image by using the kriging interpolation technology of spatial statistics. The TM Image of the Jingouling Forest Farm of Wangqing Forestry Bureau of Northeast China on 1 July 1997 was used as the tested material in this paper. Based on the classification for the TM image, the information pixel-missing patch of image was interpolated by the kriging interpolation technology of spatial statistics theory under the image treatment software-ERDAS and the geographic information system software-Arc/Info. The interpolation results were already passed precise examination. This paper would provide a method and means for interpreting the information-missing patch of image.

  • PDF

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.