• Title/Summary/Keyword: pivot loading method

Search Result 2, Processing Time 0.018 seconds

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.

Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading (Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정)

  • Kim, Lyu-Woon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.