• 제목/요약/키워드: pitting

검색결과 536건 처리시간 0.026초

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

Study on the Effect of Surface Finishing Methods on Pitting Corrosion Behavior of 304 Stainless Steel Alloy

  • Yun, JunTae;kim, Se-Woong;Hwang, HyangAn;Toor, Ihsan-Ul-Haq;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.209-216
    • /
    • 2009
  • In this study the effect of different surface finishing techniques on the pitting corrosion behaviour of a commercial 304 stainless steel alloy was investigated. Surface finishing methods were divided into two categories, i.e. mechanical and chemical. Mechanical treatment methods include power tooling such as grinding, emery paper brushing, stainless steel wire brushing and stainless steel shot blasting. Chemical treatment methods include chemical passivation (phosphoric acid, citric acid, nitric acid) and electro-cleaning (phosphoric acid and citric acid). Potentiodynamic polarization experiments were carried out in 3.5 wt. % NaCl solution at room temp. (20 $^{\circ}C$). The results showed that chemical treatment methods improved the corrosion resistance of stainless steel 304, measured in terms of pitting potential ($E_{pit}$). Corrosion resistance of the specimens was increased in the order of; electro-cleaning > manual passivation > mechanical cleaning. Surface of electro-cleaned specimens was smoother than rest of the surface treatment methods. Chrome content in chemically treated specimens was higher than in mechanically treated specimens as shown by EDX analysis.

Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식 (Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.

Pitting Corrosion Inhibition of Sprinkler Copper Tubes via Forming of Cu-BTA Film on the Inner Surface of Corrosion pits

  • Suh, Sang Hee;Suh, Youngjoon;Kim, Sohee;Yang, Jun-Mo;Kim, Gyungtae
    • Corrosion Science and Technology
    • /
    • 제18권2호
    • /
    • pp.39-48
    • /
    • 2019
  • The feasibility of using benzotriazole (BTAH) to inhibit pitting corrosion in the sprinkler copper tubes was investigated by filling the tubes with BTAH-water solution in 829 households at an eight-year-old apartment complex. The water leakage rate was reduced by approximately 90% following BTAH treatment during 161 days from the previous year. The leakage of one of the two sprinkler copper tubes was investigated with optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis to determine the formation of Cu-BTA film inside the corrosion pits. All the inner components of the corrosion pits were coated with Cu-BTA films suggesting that BTAH molecules penetrated the corrosion products. The Cu-BTA film was about 2 nm in thickness at the bottom of a corrosion pit. A layer of CuCl and $Cu_2O$ phases lies under the Cu-BTA film. This complex structure effectively prevented the propagation of corrosion pits in the sprinkler copper tubes and reduced the water leakage.

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성 (Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

Effect of Seawater Concentration on Electrochemical Corrosion of Duplex Stainless Steel

  • Ho-Seong Heo;Hyun-Kyu Hwang;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.255-265
    • /
    • 2024
  • Duplex stainless steels (UNS S32205, UNS S32750) are used in various environments. The potentiodynamic polarization tests were conducted at 30 ℃ in order to study the electrochemical corrosion behaviors of duplex stainless steels under different seawater concentrations (fresh water, seawater, mixed water). The results of Tafel analysis in seawater showed that UNS S32205 and UNS S32750 had the highest corrosion current densities at 6.12 × 10-4 mA/cm2 and 5.41 × 10-4 mA/cm2, respectively. The pitting potentials of UNS S32205 and UNS S32750 were comparable to or higher than the oxygen evolution potential in fresh water, mixed water, and seawater. The maximum damage depths and surface damage ratio caused by pitting corrosion increased with chloride concentration. The synergy effect of molybdenum and nitrogen enhances the concentration of Mo, Ni, and Cr at the interface of the metal-electrolyte. In particular, in the case of nitrogen, NH3 and NH4+ are formed to compensate for the pH drop in the pitting region, thereby strengthening the repassivation of the film. The excellent corrosion resistance of UNS S32750 is attributed to the strengthening effect of the chromium oxide film due to the presence of molybdenum and nitrogen.

$H_O_2$ 가 304L 스텐리스강의 부식거동에 미치는 영향 (Effect of $H_O_2$ on the Corrosion Behavior of 304L Stainless Steel)

  • Song, Taek-Ho;Kim, In-Sup;Park, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.453-462
    • /
    • 1995
  • 사용후 핵연료 저장구조재의 구조적 안정성자 관련해서, 감마선 조사 생성물로 알려져 있는 $H_2O$$_2$를 전해질에 주입시키었을 때, $H_2O$$_2$가 저장구조재인 304L스텐리스강의 부식거동에 어떤 영향을 미치는가를 조사하였다. 실험결과, $H_2O$$_2$는 304L 스텐리스강의 부식전위를 상승시키고 Pitting 전위를 감소시킴으로써 부동태 영역을 줄이고 pitting 저항성을 감소시키는 것으로 나타났다. 이는 감마선 조사에 의한 부식 거동 변화와 유사한 결과라고 볼 수 있으며, 또한 산소농도증가에 의한 부식거동 변화와 유사한 결과로 해석되었다. 재부동태형성전위가 $H_2O$$_2$의 존재로 증가하는데, 이로써 응력부식균열임계전위는 약간 상승할 것으로 추론되었다. 그러나, $H_2O$$_2$ 농도가 6.3$\times$$10^{-6}$M 이하로 떨어질 경우, $H_2O$$_2$는 부식거동에 영향을 주지 못했다. 이는 대기압상태에서 용존된 $O_2$환원반응속도에 비해 $H_2O$$_2$환원반응속도가 작기 때문이라고 해석되었다. 중성용액보다 산성 및 염기성 용액에서, $H_2O$$_2$가 부식거동에 미치는 영향이 작아졌는데, 이는 산성용액에서는 높은 H$^{+}$ 농도 때문에, 염기성용액에서는 le Chatelier의 원칙 때문인 것으로 해석되었다.

  • PDF

한국산 두릅나무과 식물 줄기에서 2기목부의 비교 해부 (Comparative Anatomy of the Secondary Xylem in the stem of Araliaceous Plants in Korea)

  • 박동옥
    • Journal of Plant Biology
    • /
    • 제36권4호
    • /
    • pp.345-355
    • /
    • 1993
  • 한국산 두릅나무과 식물 7속 11종의 목부해부학적 형질을 비교관찰하여 속간 목부의 특수화 정도를 검토하였다. 송악속은 산공재로서, 각상도관이 집합배열하고, 도관끝벽은 단천공이고 측벽은 호생벽공이었으며 방사조직은 오직 횡주세포로 구성된 동성 II형이었다. 황칠나무속은 환공재이며 각상의 추재부 소 도관들은 접선대상배열, 단천공 및 호생벽공의 특징을 보였고 방사조직에 간혹 수평수지도가 내재된 이성 II형이었다. 팔손이속은 산공재이고 각상도관이 접선대상배열이고, 계문상천공, 계문상 벽공 및 측벽에 나선비후가 나타났으며, 방사조직은 이성 II형이었다. 음나무속은 환공재이고, 환상의 소 도관은 접선대상배열이며, 단천공 및 호생벽공 그리고 이성 II형의 방사조직이 나타났다. 그 중 음나무는 도관내 격벽의 형태를 갖는 진충체를 가졌으나, 가는잎음나무에서는 격벽의 형태를 찾아 볼 수 없었다. 땃두릅나무속은 환공재이며 각상도관이 접선대상배열이고, 단천공 및 계문상 벽공 그리고 격벽형태를 갖는 진충체가 나타났으며 방사조직은 직립세포로만 구성된 paedomorphic type I이었다. 오갈피나무속은 산공재이며 각상도관이 접선대상배열, 단천공 및 호생벽공의 특징을 보였다. 본 속에서 오갈피나무는 이성 II형의 방사조직과 이관유조직 그리고 격벽형태를 갖는 진충차가 나타났다. 가시오갈피는 직립세포로만 구성된 paedomorphic type I의 방사조직과 격벽형태인 진충체가 나타났다. 섬오갈피와 오가나무는 이성 II형의 방사조직이 나타났으나, 진충체는 없었다. 두릅나무속은 환공재이고 환상도관이 접선대상배열, 단천공과 호생벽공, 그리고 격벽형태와 망상구조를 한 진충체가 나타났고, 이성 II형의 방사조직도 보였다. 도관요소의 배열, 모양, 길이, 직경 및 천공판의 각도와 방사조직의 형태 등에 의한 이들 특수화 순서는 가장 원시적인 팔손이속으로부터, 송악속, 오갈피나무속, 땃두릅나무속, 황칠나무속, 음나무속 그리고 두릅나무속 순으로 사료된다.

  • PDF

소형 수문용 랙-피니언의 접촉 피로수명 (Contact Fatigue Life of Rack-Pinion for Small-Sized Sluice Gate)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.299-305
    • /
    • 2017
  • Gate-lifting devices in small- to mid-sized sluice gates mostly employ the mechanical roller rack pinion (RRP) system. This RRP system, which consists of a rack-bar and a pinion, transforms a rotation motion into a linear one. The rack-bar has a series of roller trains that mesh with the pinion. In this study, we adopt an exact involute-trochoid tooth profile of the pinion to obtain a higher contact fatigue strength using the profile modification coefficient. Further, we determine the contact forces and investigate Hertz contact stresses to predict the pitting life of the pinion according to varying the shape design parameters. The results indicate that the design fatigue life of an RRP system for sluice gate can be achieved only when the design value of the profile modification coefficient reaches or exceeds a certain level.

웨이블렛 변환의 위상 지도를 이용한 초기 피팅 결함을 갖는 기어의 상태 감시 (Condition Monitoring in a Gear with Initial Pitting Using Phase Map of Wavelet Transform)

  • 심장선;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.590-595
    • /
    • 2001
  • Vibration transient generated by developing localized fault in gear can be used as indicators of condition monitoring in a gear. In this paper, we propose the phase map for a fault signal using continuous wavelet transform to detect this vibration transient. Local fault induces the abrupt fluctuation of load exciting tooth and phase lag in the vibration signal measured on the gearbox. The relatively large fault like "tip breakage" easily can be detected by the clear fluctuation of exciting load. However, minor fault like "initial pitting" cannot be detected using the load fluctuation. To detect this kind of minor fault, the phase map for a fault signal is taken into account. The phase lag by minor fault is observed well in the phase map.

  • PDF