• Title/Summary/Keyword: pitching

Search Result 407, Processing Time 0.024 seconds

Numerical Simulation for New Marine Instrumentation Buoy (해상계측용 소형 부표 설계를 위한 수치 시뮬레이션)

  • Ryu, Youn-Chul;Seong, Yu-Chang;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.497-502
    • /
    • 2013
  • There are currently 10 types of buoy, mostly which' design and development is dependent on foreign technology. In this study, it is aimed at the development of small instrumentation buoy and at the design proposal presented a numerically safety. The numerical method has the simulation of variety of marine environments, such as wave response amplitude ratio and each flux changes. Through the numerical simulation of buoy's kinetic movement, it is analyzed that Pitching motion increases by the frequency response of encounter and Added resistance appears to be the most significant on transverse waves. Finally, the proposed buoy is confirmed with the response' safety under simulation' conditions.

Wind Tunnel Test Study on the Wings of WIG Ship (WIG선의 날개에 대한 풍동실험 고찰)

  • Kim, S.K.;Suh, S.B.;Lee, D.H.;Kim, K.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents the results of 3rd wind tunnel test for the wings of WIG R/C test models, 'Hanjin-1' & 'Hanjin-2'. We made 'Hanjin-1' in last May 1995 and had a success in test flight. And in order to grasp the aerodynamic characteristics of wings in ground effect, the measurements of lift and drag were carried out for the various kinds of wing. It was shown that lift and lift-drag ratio increase with decrease of the clearance, but the feature was considerably depended on the shape of wing section. In this case we select the three kind of wing. section, and then compare their characteristics especially for a stability in longitudinal motion. They are NACA6409 for 'Hanjin-1' and the two kinds of DHMTU for ekranoplans of Russia. Experimental results show that the pitching moments of DHMTU wing sections are smaller than NACA6409.

  • PDF

A Study On the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체 운동 평가를 위한 다기능 계측시스템 개발에 관한 연구)

  • kim Chol-seong;Jung Chang-hyun;Lee Yun-sok;Kong Gil-young;Lee Chung-ro;Cho Ik-soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.69-74
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method sum as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kind of sensors sum as three dimensional accelerator, two dimensional tilt sensor, two displacement sensors and azimuth sensor. Using this measuring system(MMS), it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing sum as rolling, pitching, yawing, swaying, heaving, surging under the certain external forces.

  • PDF

Aerodynamic Characteristics of the Blended-Wing-Body for the Position and Aspect Ratio of the Inlet and Outlet of an Embedded Distributed Propulsion System (Embedded Type 분산 추진 장치의 입·출구 형상 및 위치 변화에 따른 융합익기의 공력해석)

  • Kim, Hyo-Seop;Choi, Hyun-Min;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.467-474
    • /
    • 2012
  • UAVs for reconnaissance and intelligence operations require long endurance capability, which demands high efficiency of the propulsion system. The distributed propulsion system(DPS) generates the thrust by replacing a large propulsion system with a number of small propulsion systems. A DPS distributed along the wing span can produce gains in propulsion efficiency by reducing ejection velocity. Also, the ingestion of boundary layers through the distributed DPS inlet and ejecting flow from the outlet can improve the lift to drag ratio of the vehicle. This study investigates the effects of locations and size of the inlet and outlet of the DPS on the blended-wing-body design based on Eppler 337 airfoil, with a CFD tool. The fans in the DPS are modeled as actuator disks for computational efficiency. The best location and aspect ratio of the inlet and outlet are found from lift-to-drag ratio and pitching moment considerations.

Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid (중첩 격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석)

  • Im, Dong-Kyun;Wie, Seong-Yong;Kim, Eu-Gene;Kwon, Jang-Hyuk;Lee, Duck-Joo;Park, Soo-Hyung;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • In this paper, the helicopter aerodynamics is simulated in hovering and forward flight. Also, an overlapped grid technique is applied in this simulation to consider the blade motion and moving effects. The Caradonna & Tung's rotor blade was selected to analyze the unsteady aerodynamics in hovering and non-lift forward flight. Also, the AH-1G rotor blade was selected in forward flight. In forward flight case, the numerical trim was applied to determine the cyclic pitching angles using Newton-Raphson method, and the numerical results were in good agreement with experimental data, especially, the BVI effects were well simulated in advancing side in comparison other numerical results. The governing equation is a three dimensional unsteady Euler equation, and the Riemann invariants condition is used for inflow and outflow at the boundary.

Analysis of Ride Comfort for an Automobile with flexible Vehicle Body (차체의 유연성을 고려한 차량 승차감 해석)

  • Kim Junghoon;Choi Kwangsung;Park Sungyong;Lee Jangmoo;Kang Sangwook;Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

Analysis of Aerodynamic Characteristics for Guided Gliding Type Ammunition Using Computational Analysis and Wind Tunnel Test (전산해석 및 풍동시험을 이용한 유도형 활공탄약의 공력해석)

  • Bang, Jae Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • In this study aerodynamic characteristics of guided gliding type ammunition were investigated by using a computational analysis and wind tunnel test. Missile DATCOM, a semi-empirical method, and a FLUENT, a computational fluid dynamics analysis program, were used for computational analysis. For a guided gliding type ammunition, aerodynamic characteristics were investigated by calculating lift force, drag force, pitching moment and etc. Aerodynamic characteristics of guided gliding type ammunition are completely different from those of conventional ammunition. The results obtained from the computer analysis are similar to those obtained from the wind tunnel test. Although the pitch moment values obtained by the semi-empirical method were slightly different from the wind tunnel test results, the overall computer analysis results showed trends and values similar to the test results. In this study, aerodynamic characteristics of guided gliding type ammunition were identified and it found that semi-empirical method can be applied to analyze the aerodynamic characteristic in the initial design of guided gliding ammunition.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.