• 제목/요약/키워드: pitching

검색결과 407건 처리시간 0.024초

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

해상풍력단지 개발을 위한 부유식 라이다 검증 (Validation of Floating LiDAR System for Development of Offshore Wind Farms)

  • 이진재;강승진;이광세;김홍우;김성완;안유옥;경남호
    • 신재생에너지
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, a floating LiDAR system (FLS) is investigated through a field test involving two steps. First, correlations among wind speeds, measured using the met mast and two LiDARs, are computed to analyze the acceptance criteria of LiDAR for measuring wind speed. The results of the analysis show that the slopes of single variant regression between mean wind speeds are below 1.03 and the coefficient of determination is above 0.97. Next, correlations among wind speeds measured using the FLS and a fixed LiDAR are determined through a field test carried out in Doomi-doo, Tong-young, Gyeongsangnam-do. The FLS is installed 300 m away from the fixed LiDAR on the ground. The results show that the slope of single variant regression is approximately 1.0275 and the coefficient of determination is above 0.971. According to the IEA/wind 18 recommendation, it is found that the developed FLS measures valid wind speeds to assess wind resources for the development of offshore wind farms.

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

다변량 자료에서 특이점 검출 및 시각화 - R 스크립트 (Detecting outliers in multivariate data and visualization-R scripts)

  • 김성수
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.517-528
    • /
    • 2018
  • 다변량 자료에서 특이점을 검출하고, 검출된 특이점을 시각화와 연결한 R 스크립트를 제공한다. 개발된 R 스크립트는 특이점을 검출하는 방법으로서 1) Robust Mahalanobis distance, 2) High Dimensional data, 3) Density-based approach 방법을 이용하였다. 특이점을 연결하면서 데이터 구조를 파악하기 위한 시각화 방법으로는 1) multidimensional scaling (MDS)와 minimal spanning tree (MST)를 K-means 군집분석과 연결하여 표시하는 방법, 2) MDS를 fviz cluster와 연결하는 방법, 3) principal component analysis (PCA)를 fviz cluster와 연결한 방법을 이용하였다. 사례분석의 예로서는 Major League Baseball (MLB) 자료에서 류현진이 적극적으로 활동하던 2013년, 2014년 투수자료를 이용하였다. 개발된 R 스트립트는 "http://www.knou.ac.kr/~sskim/ddpoutlier.html (R 스크립트와 R 패키지도 다운로드 받을 수 있다. 실행방법도 설명되어 있다.)"에서 다운받으면 된다.

카타마란형 파워요트의 내항성능 추정에 관한 연구 (Performance Prediction on the Seakeeping Characteristics of a Catamaran Power Yacht)

  • 손창배;오우준;구윤경;김옥석;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2010년도 춘계학술대회
    • /
    • pp.385-386
    • /
    • 2010
  • 선박의 상하동요 및 종동요 간의 내항성능은 승객에게 피로감을 주며, 적재된 화물과 선체에 탑재된 재설비에 구조적 하중을 가져오게 된다. 이러한 점을 개선하기 위해 소형 카타마란 파워요트 설계시 해당 실적선 조사와 선저형상을 결정하여 선형을 설계하였다. 본 연구에서는 국내 연안의 해양환경에 대한 기초자료를 토대로 운동성능 해석조건을 선정하였다. 이를 통해 카타마란형 레저선박의 운동성능을 선속에 따라 고찰하였다. 파도와 선박의 만남각에 따른 내항성능을 추정하여, 파랑의 만남주파수에 대한 응답진폭비와 운동성능이 우수한 영역에 대해서 평가하였다.

  • PDF

선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발 (Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat)

  • 한인수;정지훈;고백균;최청훈;유성주;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

저속 비행체 공력해석을 위한 상용 및 오픈 소스 CFD 코드 비교 (COMPARISON OF COMMERCIAL AND OPEN SOURCE CFD CODES FOR AERODYNAMIC ANALYSIS OF FLIGHT VEHICLES AT LOW SPEEDS)

  • 박동훈;김철완;이융교
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.70-80
    • /
    • 2016
  • The comparison of two commercial codes(FLUENT and STAR-CCM+) and an open-source code(OpenFOAM) are carried out for the aerodynamic analysis of flight vehicles at low speeds. Tailless blended-wing-body UCAV, main wing and propeller of HALE UAV(EAV-3) are chosen as geometries for the investigation. Using the same mesh, incompressible flow simulations are carried out and the results from three different codes are compared. In the linear region, the maximum difference of lift and drag coefficients of UCAV are found to be less than 2% and 5 counts, respectively and shows good agreement with wind tunnel test data. In a stall region, however, the reliability of RANS simulation is found to become poor and the uncertainty according to code also increases. The effect of turbulence models and meshes generated from different tools are also examined. The transition model yields better results in terms of drag which are much closer to the test data. The pitching moment is confirmed to be sensitive to the existence and the location of transition. For the case of EAV-3 wing, the difference of results with ${\kappa}-{\omega}$ SST model is increased when Reynolds number becomes low. The results for the propeller show good agreement within 1% difference of thrust. The reliability and uncertainty of three codes is found to be reasonable for the purpose of engineering use. However, the physical validity and reliability of results seem to be carefully examined when ${\kappa}-{\omega}$ SST model is used for aerodynamic simulation at low speeds or low Reynolds number conditions.

기동성 비행을 위한 날갯짓 경로의 최적화 (Optimization of the Flapping Motion for the High Maneuverability Flight)

  • 최중선;김재웅;이도형;박경진
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.653-663
    • /
    • 2012
  • 본 논문에서는 높은 기동성을 목적으로, 적절한 양력과 추진력이 발생하도록 스트로크 평면의 경사각을 고려하여 경로최적화를 수행한다. 기동성비행은 추진력을 최대화하는 비행, 양력을 최대화하는 비행, 양력과 추진력을 동시에 최대화하는 비행 세 가지로 정의하고 날갯짓운동은 단순한 사인함수로 이루어진 플런징과 피칭운동으로 정의하였다. 경로최적화 과정에서 직교배열표를 이용하여 후보점을 생성하고, 그 후보점에서 2 차원 비정상 유동해석을 하였다. 유동해석 결과를 바탕으로 크리깅방법을 이용하여 근사모델을 생성하였다. 그리고 설계정식화를 정의하고 유전알고리즘을 이용하여 최적화를 수행하였다. 세 가지 목적의 날갯짓 경로의 최적화를 통해 기동성비행을 위한 날갯짓 경로를 제시하였다. 또한 날갯짓 운동으로 인해 생성되는 와류를 분석함으로써 양력과 추진력의 발생원리를 확인하였다.

위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성 (New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests)

  • 김철;이승윤;이영춘
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.