• 제목/요약/키워드: pitch-catch

검색결과 28건 처리시간 0.02초

두개의 탐촉자를 사용한 등방성 균일 고체의 초음파 속도 및 두께 동시 측정법 (Simultaneous Measurement of Ultrasonic Velocity and Thickness of Isotropic and Homogeneous Solids Using Two Transducers)

  • 이정기;권진오;김영환
    • 비파괴검사학회지
    • /
    • 제19권5호
    • /
    • pp.363-368
    • /
    • 1999
  • 시험체의 두께나 초음파 속도를 측정하기 위해서 초음파 펄스-에코법이 널리 사용되고 있다. 초음파 속도를 결정하기 위해서는 초음파 송수신 장치를 포함한 오실로스코우프와 같은 초음파 측정 장치를 사용하여 시험편에서의 초음파진행 시간을 측정하고, 초음파 진행 거리에 해당하는 시험편의 두께를 버어니어 캘리퍼스 또는 마이크로미터와 같은 길이측정 도구를 사용하여 측정한다. 그리고 초음파를 이용하여 시험편의 두께를 측정할 때에는 초음파 속도를 알고 있는 대비 시험편으로 기준을 설정하여야 한다. 본 연구에서는, 대비 시험편 없이 재료의 두께와 초음파 속도를 동시에 구하는 방법을 제시하였다. 재질과 두께를 달리한 여러 시험편에서 측정된 초음파 속도와 두께가 기존의 방법에 의해 측정한 값과 잘 일치하였다.

  • PDF

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.

Comb Transducer를 이용한 파이프 내 유도초음파 모드의 거동에 관한 연구 (A Study on the Behavior of Ultrasonic Guided Wave Mode in a Pipe Using Comb Transducer)

  • 박익근;김용권;조윤호;안연식;조용상
    • 비파괴검사학회지
    • /
    • 제24권2호
    • /
    • pp.142-150
    • /
    • 2004
  • 발전설비의 보수검사에 적용하기 위한 예비 연구로 comb transducer를 이용한 파이프 내에서의 유도초음파 모드의 거동을 실험적으로 검증하였다. 유도초음파의 모드식별은 STFT와 WT에 의한 시간-주파수해석을 통하여 최적의 모드를 선정하였다. 시간-주파수해석과 이론적 해석 방법인 분산 곡선을 비교한 결과 잘 일치함을 알 수 있었으며, pitch-catch법과 선단부로부터 반사된 신호를 모드 분석한 결과 L(0,1) 모드가 다른 모드에 비해 모드변환에 의한 영향이 적었다. 따라서 L(0,1)을 최적의 모드로 선정하고, 결함위치를 추정한 결과 유용함을 알 수 있었다.

Artificial neural network model using ultrasonic test results to predict compressive stress in concrete

  • Ongpeng, Jason;Soberano, Marcus;Oreta, Andres;Hirose, Sohichi
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.59-68
    • /
    • 2017
  • This study focused on modeling the behavior of the compressive stress using the average strain and ultrasonic test results in concrete. Feed-forward backpropagation artificial neural network (ANN) models were used to compare four types of concrete mixtures with varying water cement ratio (WC), ordinary concrete (ORC) and concrete with short steel fiber-reinforcement (FRC). Sixteen (16) $150mm{\times}150mm{\times}150mm$ concrete cubes were used; each contained eighteen (18) data sets. Ultrasonic test with pitch-catch configuration was conducted at each loading state to record linear and nonlinear test response with multiple step loads. Statistical Spearman's rank correlation was used to reduce the input parameters. Different types of concrete produced similar top five input parameters that had high correlation to compressive stress: average strain (${\varepsilon}$), fundamental harmonic amplitude (A1), $2^{nd}$ harmonic amplitude (A2), $3^{rd}$ harmonic amplitude (A3), and peak to peak amplitude (PPA). Twenty-eight ANN models were trained, validated and tested. A model was chosen for each WC with the highest Pearson correlation coefficient (R) in testing, and the soundness of the behavior for the input parameters in relation to the compressive stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 40%. This was due to the presence of more voids for high water cement ratio that activated Contact Acoustic Nonlinearity (CAN) at the latter stage of the loading path. FRC showed slow response to stress than ORC, indicating the resistance of short steel fiber that delayed stress increase against the loading path.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

두부충동 검사 (Head Thrust Test)

  • 최광동;오선영;김지수
    • Annals of Clinical Neurophysiology
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2006
  • The head thrust maneuver is a simple bedside test of the higher frequency vestibulo-ocular reflex, which is based on Ewald's second law. It is performed by grasping the patient's head and applying a brief, small-amplitude, high-acceleration head turn, first to one side and then to the other. The patient fixates on the examiner's nose and the examiner watches for corrective rapid eye movements (saccades), which are a sign of decreased vestibular response. The "catch-up" saccades after a head thrust in one direction indicate a peripheral vestibular lesion on that side (in the labyrinth or the $8^{th}$ nerve including the root's entry zone in the brain stem). An individual pair of vertical semicircular canals can also be stimulated by turning the head to the right or left by $45^{\circ}$ and then by rotating the head in the pitch plane relative to the body. Recent studies have suggested that assessment of individual semicircular canal function by head thrust test may provide useful information for anatomical and functional details of a variety of peripheral vestibulopathies and for predicting the prognosis of vestibular neuritis. In central vestibulopathy, the head thrust test may also be valuable sign to determine dysfunction of the central pathways from individual semicircular canals and its role for the development of diverse central nystagmus.

  • PDF

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.