• 제목/요약/키워드: pitch-based carbon fiber

검색결과 84건 처리시간 0.018초

탄소섬유 보강 시멘트 복합체의 공학적 특성에 관한 실험적 연구 (Experimental Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites)

  • 박승범
    • 콘크리트학회지
    • /
    • 제1권1호
    • /
    • pp.95-104
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies on the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, Lengths, contents of carbon fibers and matrices, their properties of fresh and hardened CFRC were tested: According to the test results, the process technology of lightweight CFRC is developed and their optimum mix proportions are successfully proposed. Also, it can be conclueded that the reinforcement of carbon fiber is considerably effective in improving tensile strength, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.

Preparation of Partial Mesophase Pitch-based Carbon Fiber from FCC-DO

  • Park, Sang-Hee;Yang, Kap-Seung;Soh, Soon-Young
    • Carbon letters
    • /
    • 제2권2호
    • /
    • pp.99-104
    • /
    • 2001
  • Partial mesophase (PM) pitch precursor was prepared from fluidized catalytic cracking-decant oils (FCC-DO) by chemical reaction in the presence of $Br_2$. The PM pitch heated-treatment at $420^{\circ}C$ for 9 h exhibited the softening point of $297^{\circ}C$ with 23% yield, and 55% anisotropic content. The PM pitch precursor was melt-spun through circular nozzle by pressurized $N_2$, stabilized at $310^{\circ}C$, carbonized at $700^{\circ}C$, $1000^{\circ}C$, and $1200^{\circ}C$. The enough stabilization introduced 16.4% of the oxygen approximately. The stacking height ($L_{c002}$) and interlayer spacing ($d_{002}$) of the as-spun fibers were 4.58 nm and $3.45{\AA}$ and the value became minimum and maximum at $700^{\circ}C$ respectively in the carbonization procedure. The tensile strength increased with an increase in the heat treatment temperature exhibiting highest value of 750 MPa at $1200^{\circ}C$ carbonization.

  • PDF

폴리머 함침 탄소섬유 보강 시멘트 복합체의 역학적 특성 (A Study on the Mechanical Properties of Carbon Fiber Reinforced Polymer Impregnated Cement Composites)

  • 박승범;윤의식;송용순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.111-116
    • /
    • 1991
  • In order to discuss the mechanical properties of carbon fiber reinforced polymer impregnated cement composties with silica powder, experimental studies on CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, length, contents of carbon fibers and matrices, their properties of fresh and hardened CFRC were tested. According to the test results, compressive, tensile flexural strength of polymer impregnated CFRC were remarkably increased more than that of air cured and autoclaved CFRC. Also, polymer impregnated CFRC were considerably effective in improving thoughness, freezing-thaw resistance and loss of shrinkage compared with air cured and autoclaved CFRC.

  • PDF

Oxidation Resistance and Graphitization of Boron Oxide Implanted Carbon/Carbon Composites

  • Joo, Hyeok-Jong;Oh, In-Hwan;Ahn, Il-Hwan
    • Carbon letters
    • /
    • 제5권3호
    • /
    • pp.127-132
    • /
    • 2004
  • Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by $2000^{\circ}C$ and $2400^{\circ}C$ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at $2000^{\circ}C$ graphitization temperature. However, it was quite at $2400^{\circ}C$ graphitization.

  • PDF

Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition

  • Kim, Jiyoung;Im, Ui-Su;Lee, Byungrok;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.72-78
    • /
    • 2016
  • Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Choi, Jong-Eun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.358-364
    • /
    • 2018
  • An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

Flexural Behaviors of 4D Carbon/carbon Composites with the Preform Architectures

  • Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Multidirectional reinforcement is aimed primarily at overcoming interlaminar weakness, hence a major interest lies in the mechanical properties of multidirectional carbon/carbon composites. Mechanical properties depend on the type of carbon fiber, the size of the fiber bundle, the spacing of the bundles, the angles of the bundles relative to the axes of the block, and matrix formation. In the present studies, PAN based carbon fiber preforms manufactured different size of unit cell have been prepared. Densification of these used high pressure infiltration and carbonization technique with coal tar pitch as matrix precursor was carried out. Scanning electron microscopy has been used to study the fracture behavior of composites. The size of unit cell of the preforms has considerably affected on the flexural properties as well as microstructure of the carbon/carbon composites.

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF