• Title/Summary/Keyword: pitch slope

Search Result 55, Processing Time 0.025 seconds

A Word Line Ramping Technique to Suppress the Program Disturbance of NAND Flash Memory

  • Lee, Jin-Wook;Lee, Yeong-Taek;Taehee Cho;Lee, Seungjae;Kim, Dong-Hwan;Wook-Ghee, Hahn;Lim, Young-Ho;Suh, Kang-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • When the program voltage is applied to a word line, a part of the boosted channel charge in inhibited bit lines is lost due to the coupling between the string select line (SSL) and the adjacent word line. This phenomenon causes the program disturbance in the cells connected to the inhibited bit lines. This program disturbance becomes more serious, as the word line pitch is decreased. To reduce the word line coupling, the rising edge of the word-line voltage waveform was changed from a pulse step into a ramp waveform with a controlled slope. The word-line ramping circuit was composed of a timer, a decoder, a 8 b D/A converter, a comparator, and a high voltage switch pump (HVSP). The ramping voltage was generated by using a stepping waveform. The rising time and the stepping number of the word-line voltage for programming were set to $\mutextrm{m}-$ and 8, respectively,. The ramping circuit was used in a 512Mb NAND flash memory fabricated with a $0.15-\mutextrm{m}$ CMOS technology, reducing the SSL coupling voltage from 1.4V into a value below 0.4V.

  • PDF

THREE-DIMENTIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION FOR DIFFERENT IMPLANT THREAD SLOPE (임플랜트 나사선 경사각이 치조골 응력 분포에 미치는 영향)

  • Seo, Young-Hun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.482-491
    • /
    • 2007
  • Statement of problem: The screws of dental implant, having various thread types, can be categorized into different classes by their geometrical form, and each type transmits dissimilar amount and form of stress to alveolar bone. Purpose: The purpose of this study was to find an inclination angle of the screw thread that is favorable in distributing the stresses to alveolar bone. Material and methods: In this study, We used three dimensional finite element analysis with modeling having three types of thread inclination angles and fixed pitch-0.8 mm (single thread type with $3.8^{\circ}$ inclination, double thread type with $7.7^{\circ}$ inclination, triple thread type with $11.5^{\circ}$ inclination). Results: The results obtained from this study were as follows; 1. When the number of thread increased, the amount of Von-Mises stress was reduced since the generated stress was effectively distributed. 2. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants when comparing the magnitude of the maximum principal stress double thread had least amount of stress. This shows that the double thread screw gave best result. Conclusion: In conclusion, double, and triple thread screws were found to be more effective on distribution of the stress than the single thread screws. But, increasing in the thread inclination angle such as triple thread screw relate on the magnitude of the maximum principal stress affecting on the alveolar bone can become problematic. Thus, effective combination of thread number and thread inclination angle can help prolonging the longevity of implant.

Development of an Inexpensive Black Box with Transmission of SOS and Theft Signal for an Agricultural Tractor (도난방지 및 구조신호 전송기능이 있는 저가형 농용트랙터 블랙박스 개발)

  • Kim, YuYong;Shin, Seung-Yeoub;Kim, Byounggap;Kim, Hyung Kweon;Cho, Yongho;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.352-358
    • /
    • 2012
  • Purpose: The inexpensive black box system was developed to acquire and save driving information, to give the slope information, and to transmit SOS and theft signal. Method: The device consists of a main micro controller to acquire and save data, a GPS sensor module, a CDMA module, a touch LCD module, a RF (Radio Frequency) ID module, a SD (Secure Digital) card module, an emergency electric power source, a theftproof circuit, and a sensing device. The sensing device consists of a 8 bit micro controller, a accelerometer to detect impulse, two slope sensors to detect roll and pitch angle and a circuit to detect operation of 6 lighting devices. Results: Test results are as follows: 1) a tractor can be start up only with an electronic key (password or RFID card), 2) theft signal was transmitted when a tractor moved without an electronic key, 3) SOS was transmitted at conditions that rollover or crash happened. 4) 5 more than per 1s data are recorded at 5 minute intervals as new file name in SD card. Conclusions: This system can be used to save travelling record, reduce accident, prevent theft and rescue life in the accidents.

Casting Lowered-ADCP and Data Processing Methods for Configuring Vertical Current Structure (해류 수직구조를 파악하기 위한 LADCP Casting 및 자료처리 방법)

  • Kim, Eung;Jeon, Dong-Chull;Shin, Chang-Woong;Kim, Dong-Guk
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.397-407
    • /
    • 2011
  • To understand the vertical structure of ocean currents from raw data observed by lowered-ADCP (LADCP), these data require post-processing. Data were processed using Krahman's version 10.8 processing software based on Matlab. It is estimated the influence of auxiliary data affecting the processed current structure. The bottom-tracked velocities and the GPS information significantly contribute the offset on reference velocities in the bottom layer and barotropic ones in the middle layer, respectively. Good quality data can be obtained when LADCP is least tilted in pitch and roll during observation. In situ application of LADCP to the (northward) volume transports of Kuroshio in the East China Sea proved to be 24.8. Sv (= $1{\times}10^6m^3s^{-1}$) in October 2007, and 28.2 Sv in June 2008, respectively. The volume transport is relatively large over the continental slope when compared to the shelf or the deep sea.

Study on Correlation of Outsole Pattern of Sports Shoes and Frictional Coefficient (운동화 바닥창 무늬형태와 마찰계수의 상관관계 연구)

  • Lee, Jong-Nyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • One of the major factors affecting maneuverability of an athlete is frictional force caused at an outsole of his shoe. The magnitude of the frictional force is closely related to pattern and hardness of outsole and roughness of ground or floor. This study then focuses on the effect of outsole pattern of sports shoes on the frictional force. After surveying outsole patterns of sports shoes in markets, we select 4 types of outsole patterns, such as straight, W, O, and wave as primary outsole patterns of sports shoe and we also select depth, pitch and slope as design parameters of each pattern. Corresponding to those patterns and design parameters, various outsole specimen are prepared for frictional experiments. After performing frictional tests with those specimen, coefficients of friction(COF) are collected and analyzed with a statistical tool to draw useful conclusion.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation (임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석)

  • Seo, Young-Hun;Lim, Hyun-Pil;Yun, Kwi-Dug;Yoon, Suk-Ja;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Purpose: The purpose of this study was to find an inclination slope of the screw thread that is favorable in distributing the stresses to alveolar bone by using three dimensional finite element analysis. Materials and methods: Three types modelling changed implant thread with fixed pitch of 0.8 mm is the single thread implant with $3.8^{\circ}$ inclination, double thread implant with $7.7^{\circ}$ inclination and the triple thread implant with $11.5^{\circ}$ inclination. And three types implant angulation is the $0^{\circ}$, $10^{\circ}$ and $15^{\circ}$ on alveolar bone. The 9 modelling fabricated for three dimensional finite element analysis that restored prosthesis crown. The crown center applied on 200 N vertical load and $15^{\circ}$ tilting load. Results: 1. The more tilting of implant angulation, the more Von-Mises stress and Max principal stress is increasing. 2. Von-Mises stress and Max principal stress is increasing when applied $15^{\circ}$ tilting load than vertical load on the bone. 3. When the number of thread increased, the amount of Von-Mises stress, Max principal stress was reduced since the generated stress was effectively distributed. 4. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants. When comparing the magnitude of the maximum principal stress, the triple thread implant had a least amount of stress. This shows that the triple thread implant gave a best result. Conclusion: A triple thread implant to increase in the thread slope inclination and number of thread is more effective on the distribution of stress than the single and double thread implants especially, implant angulation is more tilting than $10^{\circ}$ on alveolar bone. Thus, effective combination of thread number and thread slope inclination can help prolonging the longevity of implant.

Fracture Characteristics of the Resistance Spot Welded Joints by Acoustic Emission (음향방출법에 의한 저항 점용접부의 파괴특성에 대한 연구)

  • Jo, Dae-Hee;Rhee, Zhang-Kyu;Park, Sung-Oan;Kim, Bong-Gag;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.14-22
    • /
    • 2007
  • In this paper, the acoustic emission(AE) behaviors were investigated with single-and 2-spot resistance spot welded SPCC specimens. Test specimens were welded horizontally and/or vertically according to the rolling direction of base netal in 2-spot welding. In the case of 2-spot welding, when tensile-shear test has below amplitudes: crack initiation $50{\sim}60dB;$ tear fracture $40{\sim}50dB$. And when cross tensile test has below amplitudes: early stage $75{\sim}85dB;$ yielding point $65{\sim}75dB;$ post yielding $40{\sim}60dB;$ plug fracture $70{\sim}80dB\;or\;90{\sim}100dB$. Also, from the b-value that is slope of AE amplitude, we knew that there are lots of low amplitudes if b-value is big(i.e., tensile-shear $specimen{\rightarrow}tear$ fracture or shear fracture), and there are lots of high amplitudes if b-value is small(i.e.. cross tensile $specimen{\rightarrow}plug$ fracture). As the results of fiacture mechanism analyses through AE amplitude distributions, change of the b-value represented fracture patterns of materials. Correspondingly, low amplitude signals appeared in crack initiation, and high amplitude signals appeared in base metal fracture. We confirmed that these amplitude distributions represented the change or degradation of materials.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.