• 제목/요약/키워드: pitch singularity

검색결과 5건 처리시간 0.021초

Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험 (Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability)

  • 김동균;이병진;이영재;성상경
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

인공위성을 위한 제어모멘트자이로의 설계시 고려요소 및 배치형상 개선방안 (Design Criteria and Cluster Configuration Improvement of Single Gimbal Control Moment Gyros for Satellite)

  • 서현호;이승우;이선호;오시환;임조령;용기력
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.48-56
    • /
    • 2008
  • CMG는 인공위성의 자세제어에 필수적인 구동기로 각광받고 있다. 본 논문에서는 CMG의 특이점 회피를 위해 제한된 각운동량 범위(2H)내에서 사용할 경우, CMG의 설계시 고려할 요소를 확인해본다. 아울러 3개의 CMG가 사용될 경우에 대해 필요한 분석과 해석을 수행하였다. 또한 4개의 CMG가 사용될 경우, CMG의 특이점 회피를 위해 기존에 사용하였던 설치방식과 다른 개선된 설치방식을 제안함으로써 위성 운용시 자세기동 빈도가 많은 롤 또는 피치축의 한쪽 축방향 회전에 대한 기동 성능향상 방안을 확인하였다.

비선형이론에 의한 Supercavitation 익렬의 유동해석 (The Flow Analysis of Supercavitating Cascade by Nonlinear Theory)

  • 박이동;황윤
    • 태양에너지
    • /
    • 제17권1호
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

A Design Method for Cascades Consisting of Circular Arc Blades with Constant Thickness

  • Bian, Tao;Han, Qianpeng;Bohle, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.63-75
    • /
    • 2017
  • Many axial fans have circular arc blades with constant thickness. It is still a challenging task to calculate their performance, i.e. to predict how large their pressure rise and pressure losses are. For this task a need for cascade data exists. Therefore, the designer needs a method which works quickly for design purposes. In the present contribution a design method for such cascades consisting of circular arc blades with constant thickness is described. It is based on a singularity method which is combined with a CFD-data-based flow loss model. The flow loss model uses CFD-data to predict the total pressure losses. An interpolation method for the CFD-data are applied and described in detail. Data of measurements are used to validate the CFD-data and parameter variations are conducted. The parameter variations include the variation of the camber angle, pitch chord ratio and the Reynolds number. Additionally, flow patterns of two dimensional cascades consisting of circular arc blades with constant thickness are shown.

손동작 영상획득을 이용한 최소침습수술로봇 무구속 마스터 인터페이스 (Non-restraint Master Interface of Minimally Invasive Surgical Robot Using Hand Motion Capture)

  • 장익규
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권3호
    • /
    • pp.105-111
    • /
    • 2016
  • Introduction: Surgical robot is the alternative instrument that substitutes the difficult and precise surgical operation; should have intuitiveness operationally to transfer natural motions. There are limitations of hand motion derived from contacting mechanical handle in the surgical robot master interface such as mechanical singularity, isotropy, coupling problems. In this paper, we will confirm and verify the feasibility of intuitive Non-restraint master interface which tracking the hand motion using infra-red camera and only 3 reflective markers without the hardware handle for the surgical robot master interface. Materials & methods: We configured S/W and H/W system; arranged 6 infra-red cameras and attached 3 reflective markers on hands for measuring 3 dimensional coordinate then we find the 7 motions of grasp, yaw, pitch, roll, px, py, pz. And we connected Virtual-Master to the slave surgical robot(Laparobot) and observed the feasibility. To verify the result of motion, we compare the result of Non-restraint master and that of clinometer (and protractor) through measuring 0~180 degree, 10degree interval, 1000 samples and recorded standard deviation stands for error rate of the value. Results: We confirmed that the average angle values of Non-restraint master interface is accurately corresponds to the result of clinometer (and protractor) and have low error rates during motion. Investigation & Conclusion: In this paper, we confirmed the feasibility and accuracy of 3D Non-restraint master interface that can offer the intuitive motion of non-contact hardware handle. As a result, we can expect the high intuitiveness, dexterousness of surgical robot.