• Title/Summary/Keyword: pitch measurement location

Search Result 11, Processing Time 0.026 seconds

A Study of the Pitch Measurement Location and Reference Line for a Research of Declination in Korean (한국어의 점진하강(declination) 연구를 위한 음높이 측정 위치와 기준선 고찰)

  • Kwak, Soook-Young;Shin, Ji-Young
    • Phonetics and Speech Sciences
    • /
    • v.1 no.2
    • /
    • pp.75-84
    • /
    • 2009
  • The aim of this paper is to find an adequate method to study declination in Korean. In previous studies of declination in Korean, maximum and minimum pitch values in an accentual phrase were measured. But this method is inadequate when an accentual phrase is located at the intonational phrase. So in order to exclude the final tone of an intonational phrase, we propose to measure pitch values of the first and second tone in an accentual phrase when the tonal pattern of the accentual phrase is 'LHLH'. In this case, the line that connects every first tone of an accentual phrase is the baseline, and the line that connects every second tone of an accentual phrase is the topline. By a comparison of declination between focused and neutral utterances, we will show that the topline of declination is more direct to the speaker's plan than the baseline.

  • PDF

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.

Study of the Effects of Wakes on Cascade Flow (후류가 익렬유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.309-314
    • /
    • 1999
  • This paper is concerned with the viscous interaction between rotor and stator The viscous interaction is caused by wakes from upstream blades. The cascade was composed with five blades and cylinders were placed to make wakes and their location was about 50 percent of blade chord upstream. The location of cylinders were varied in the cascade axis with 0, 20, 40, 60 and 80 percent of pitch length. The velocity distribution in the cascade passage were measured using single slanted hot-wire and the ones in the boundary layer using boundary probe. As a result, wakes decay more rapidly at suction surface and more slowly at pressure surface. And the measurement of momentum thickness of cascade shows that the momentum thickness is larger near the blade surface. From measurement of blade boundary layer, turbulent intensity is also larger near the blade surface because wakes collide the boundary layer And wakes make boundary layer thickness smaller and delay flow separation.

  • PDF

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.

A Study on Low Pitch Accent Produced in Different Locations in English Sentences (영어 문장 내 상이한 위치에 나타난 저성조 피치 액센트 연구)

  • Yi, So-Pae;Kim, Soo-Jung
    • Phonetics and Speech Sciences
    • /
    • v.3 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • Recent studies on English $L^*$ (low pitch accent) have revealed the difference of changes in acoustic manifestation between utterances produced by Koreans and those produced by native speakers of English. However, not much effort has been made to compare $L^*$ focused constituents and non-focused constituents. At the same time, most previous works on focus realization are lacking in terms of normalization of acoustic measurement. Therefore, this research is dedicated to comparing the $L^*$ focused items and non-focused items realized by Koreans and Americans and to examining the realization of English $L^*$ produced by the two language groups with improved normalization of the acoustic features (F0, intensity and duration). Within-group analysis comparing focused words and non-focused words showed both Americans and Koreans prolonged the $L^*$ focused syllables but the effect size of syllable lengthening made by Koreans was far less than that made by Americans. Furthermore, significant F0 lowering was found in Americans but not in Koreans. However, the effect of intensity change caused by $L^*$ focus was not significant within each group. The effect of focused words was tested between the two groups revealing that Koreans implemented English $L^*$ focus with higher F0, lower intensity and shorter duration than Americans. In the instances in which a significant Group x Focus Location (initial, middle and final of a sentence) interaction was found, further analysis testing the effect of Group on each Focus Location was conducted. The testing showed that the Koreans produced shorter syllables at initial and middle of a sentence and higher F0 at initial of a sentence than Americans. Implications for the intonation training were also discussed.

  • PDF

Directivity Analysis for Optimal Design of Ultrasonic Angle Beam Transducer (초음파 사각 트랜스듀서의 최적설계를 위한 지향성 해석)

  • Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.796-803
    • /
    • 2008
  • Ultrasonic testing uses the directivity of the ultrasonic wave, which propagates in on direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of an ultrasonic wave is related to the choice of probe arrangement, testing sensitivity and scanning pitch and correct measurement of defect size and location. This paper describes on the directivity measurement of ultrasonic wave using the visualization method. The directivity of shear wave emitted from the angle beam transducer were constant during propagation. The difference of directivity was existed between 2 MHz and 4 MHz angle beam transducers. When these experimental results were compared with the theory which was based on the continuous wave, it showed good agreement with theoretical directivity on the principal lobe.

Ultra-Wide Band Sensor Tuning for Localization and its Application to Context-Aware Services (위치추적을 위한 UWB 센서 튜닝 및 상황인지형 서비스에의 응용)

  • Jung, Da-Un;Choo, Young-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1120-1127
    • /
    • 2008
  • This paper presents implementation of localization system using UWB (Ultra-Wide Band) sensors and its experimental results along with development of context-aware services. In order for precise measurement of position, we experimented various conditions of pitch angles, yaw angles, number of sensors, height of tags along with measuring errors at each installation. As an application examples of the location tracking system, we developed an intelligent health training management system based on context-aware technology. The system provides appropriate training schedule to a trainee by recognizing position of the trainee and current status of gymnastic equipments and note the usage of the equipment through a personal digital assistant (PDA). Error compensation on position data and moving direction of the trainee was necessary for context-aware service. Hence, we proposed an error compensation algorithm using velocity of the trainee. Experimental results showed that proposed algorithm had made error data reduce by 30% comparing with the data without applying the algorithm.

Losses and Flow Structure for the Movement of Turbine Blade Row (터빈익렬의 이동에 따른 손실 및 유동장에 관한 실험적 연구)

  • Cho, Soo-Yong;Jung, Yang-Beom
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.70-79
    • /
    • 2017
  • The output power of turbine is greatly affected by the losses generated within the passage. In order to develop a better turbine or loss models, an experimental study was conducted using a linear cascade experimental apparatus. The total pressure loss and flow structures were measured at two cross-sectional planes located downstream of blade row. Measurement was conducted in a steady state for the several different locations of the blade row along the rotational direction. The blade row moved by 20 % of the pitch, and tip clearance was varied from 2% to 8%. Axial-type blades were used and its blade chord was 200mm. A square nozzle was applied and its size was $200mm{\times}200mm$. The experiment was conducted at a Reynolds number of $3{\times}10^5$ based on the chord. Nozzle flow angle sets to $65^{\circ}$ based on the axial direction and the solidity of blade row was 1.38. From the experimental results, the total pressure loss was greatly varied in the receding region than in the entering region. The flow properties within the blade passage were strongly changed according to the location of blade row.

Estimating Location in Real-world of a Observer for Adaptive Parallax Barrier (적응적 패럴랙스 베리어를 위한 사용자 위치 추적 방법)

  • Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1492-1499
    • /
    • 2019
  • This paper propose how to track the position of the observer to control the viewing zone using an adaptive parallax barrier. The pose is estimated using a Constrained Local Model based on the shape model and Landmark for robust eye-distance measurement in the face pose. Camera's correlation converts distance and horizontal location to centimeter. The pixel pitch of the adaptive parallax barrier is adjusted according to the position of the observer's eyes, and the barrier is moved to adjust the viewing area. This paper propose a method for tracking the observer in the range of 60cm to 490cm, and measure the error, measurable range, and fps according to the resolution of the camera image. As a result, the observer can be measured within the absolute error range of 3.1642cm on average, and it was able to measure about 278cm at 320×240, about 488cm at 640×480, and about 493cm at 1280×960 depending on the resolution of the image.

Development of a real-time surface image velocimeter using an android smartphone (스마트폰을 이용한 실시간 표면영상유속계 개발)

  • Yu, Kwonkyu;Hwang, Jeong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.469-480
    • /
    • 2016
  • The present study aims to develop a real-time surface image velocimeter (SIV) using an Android smartphone. It can measure river surface velocity by using its built-in sensors and processors. At first the SIV system figures out the location of the site using the GPS of the phone. It also measures the angles (pitch and roll) of the device by using its orientation sensors to determine the coordinate transform from the real world coordinates to image coordinates. The only parameter to be entered is the height of the phone from the water surface. After setting, the camera of the phone takes a series of images. With the help of OpenCV, and open source computer vision library, we split the frames of the video and analyzed the image frames to get the water surface velocity field. The image processing algorithm, similar to the traditional STIV (Spatio-Temporal Image Velocimeter), was based on a correlation analysis of spatio-temporal images. The SIV system can measure instantaneous velocity field (1 second averaged velocity field) once every 11 seconds. Averaging this instantaneous velocity measurement for sufficient amount of time, we can get an average velocity field. A series of tests performed in an experimental flume showed that the measurement system developed was greatly effective and convenient. The measured results by the system showed a maximum error of 13.9 % and average error less than 10 %, when we compared with the measurements by a traditional propeller velocimeter.