• Title/Summary/Keyword: pit depth

Search Result 80, Processing Time 0.024 seconds

Localized Corrosion Resistance and Microstructural Changes in UNS N07718 Alloy After Solution Heat Treatment

  • Yoon-Hwa Lee;Jun-Seob Lee;Soon il Kwon;Jungho Shin;Je-Hyun Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.166-178
    • /
    • 2024
  • The localized corrosion resistance of UNS N07718 alloy was investigated after solution heat treatment. When the alloy was heat-treated at 1050 ℃ for 2.5 hours, it experienced an increase in average grain diameter, a reduction in grain boundary area, and the dissolution of delta phases along grain boundaries. Additionally, primary metallic nitrides (MN) and metallic carbides (MC), enriched with either Ti or Nb, were identified and exhibited a random distribution within the microstructures. Despite the solution heat treatment, the composition, diameter, and abundance of MNs and MCs remained relatively consistent. The critical pitting temperature (CPT), as determined by the ASTM G48-C immersion test, revealed similar values of 45 ℃ for both treated and untreated alloys. However, a decrease in maximum pit depth and corrosion rate was observed after the solution heat treatment. The microstructural changes that occurred during the heat treatment and their potential implications were discussed to understand the influence of the solution heat treatment.

Diagnostic Utilization of Laser Fluorescence for Resin Infiltration in Primary Teeth (유치의 레진침투법을 위한 레이저 형광법의 진단적 활용)

  • Park, Soyoung;Jeong, Taesung;Kim, Jiyeon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.265-273
    • /
    • 2019
  • This study was performed to evaluate clinical use of laser fluorescence (LF) to identify early childhood caries lesions suitable for applying resin infiltration. 20 exfoliated primary molars with proximal caries were selected and cut buccolingually cross the central pit for regarding the mesial and distal surfaces respectively. 27 specimens corresponding to ICDAS code 1 and 2 were selected and the LF values were measured. When infiltrant resin was applied, double staining for microscopy detection has done simultaneously. Tooth samples were sliced with 0.7 mm thick. The maximum lesion depth, maximum penetration depth, and average penetration rate were measured from the confocal scanning laser microscope image. Pearson correlation analysis was performed. The intraclass correlation coefficient of LF values shows excellent agreement. LF values had positive correlation with penetration rate, but not lesion depth and penetration depth. Significant correlation between LF readings and penetration rate was verified in deep enamel caries and dentin caries except shallow enamel caries. Infiltrant resin could penetrate with a higher rate and LF values could be increased in more active caries lesions. In assessing radiologically similar caries lesion, laser fluorescence might be useful for identifying caries activity.

Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels (저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향)

  • Lee, Jewon;Roh, Y.S.;Sung, J.H.;Lim, S.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF

An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation (수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가)

  • 김상규;한성길;이민형;안상로
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.149-162
    • /
    • 2001
  • Longitudinal cracks have occurred on the crest of dams soon after their construction of two earth-rocfill dams located in Samlangjin. They are a pair of pumped storage dams constructed for generation of electrical power. The upper dam and lower dam are subjected to the variation of water level more than 10m once in a day alteratively. This paper deals with the finding of possible causes for longitudinal cracks about upper dam. The dominant cause was considered to be due to fluctuation of water load, for which numerical analysis was carried out using the hyperbolic model. In order to obtain parameters necessary to the analysis, a series of triaxial tests was performed for both core and rock material. Also dynamic triaxial test was performed to obtain dynamic properties of soils, which could be used as input data to simulate frequent variation of stress change due to the water fluctuation. It was known from the numerical analysis that the confining pressure of upper 4m from the top of the crest become negative after repeating of water load, meaning that tension cracks occurred in the top portion of the crest. The depth of longitudinal cracks has been investigated by digging test pit on the crest. This results agree with the field observation.

  • PDF

Behavior of the tunnel under the influence of a existing building during the adjacent ground excavation (근접굴착 시 기존건물의 영향을 받는 터널의 거동)

  • Lee, Jong-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.609-623
    • /
    • 2018
  • If the ground is excavated in a depth which is deeper than the adjacent existing tunnel, the behavior of the braced wall is known to be greatly affected by the presence of the tunnel. By the way it is expected to be also affected by the structure on the ground surface, There are not many examples of studies which are conducted on this subject. As a result, largel scale model tests and analysis were conducted, to measure the behavior of the tunnel under the building whose location on the ground surface was varied during the adjacent ground excavation. For this purpose, the location of a building load was varied in 0 m, 1D, 2D on ground surface. In this paper, the behaviors of braced wall and adjacent tunnel was studied. Model tests in 1 : 10 scale were performed in real construction sequences. The size of test pit was $2.0m(width){\times}6.0m(height){\times}4.0m(length)$ in dimension. As a result, it was found that the stability of the existing tunnel under the influence of the building load on the ground surface adjacent to the braced wall.

Case Studies of Electrical Resistivity Imaging Technique in Civil & Environmental Engineering Areas (전기비저항 영상화 기법의 토목 및 환경분야 적용사례연구)

  • 정연문;김정호
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.91-102
    • /
    • 1998
  • Electrical resistivity method, one of the most widely used geophysical prospecting methods. has been usually applied to explorations for groundwater and underground resources. However, it has been extending its scope to civil & environmental engineering areas since it twas been developed so as to image underground structures effectively. A FEM algorithm for the dipole-dipole array was developed to correct topographic effects which have a serious influence on electrical methods. Applicability of the electrical resistivity imaging technique to civil & environmental engineering areas was verified through three case histories in this study First, thickness of soil layers was profiled to judge the possibility of developing borrow-pits tn an industrial complect site. Second, weak zones such as fractures and coal seams were detected to provide geological information for design and construction in a high mountain tunnel site. Third, horizontal/vertical distribution of the contaminated zone and depth of waste disposal were delineated in a completed industrial waste disposal site.

  • PDF

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater (양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가)

  • Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

A Study on the Plate-Type Polymer Hyperfine Pit Structure Fabrication and Mechanical Properties Measurement by Using Thermal-Nanoindentation Process (열간나노압입공정을 이용한 극미세 점구조체 제작을 위한 플라스틱소재 판의 기계적 특성 조사)

  • Lee, E.K.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.633-642
    • /
    • 2008
  • It's important to measure quantitative properties about thermal-nano behavior of polymer for producing high quality components using Nanoimprint lithography process. Nanoscale indents can be used to make the cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, formability of polymethylmetacrylate(PMMA) and polycarbonate(PC) were characterized Polymer has extreme variation in thermo mechanical variation during forming high temperature. Because of heating the polymer, it becomes softer than at room temperature. In this case it is particularly important to study high temperature-induced mechanical properties of polymer. Nanoindenter XP(MTS) was used to measure thermo mechanical properties of PMMA and PC. Polymer was heated by using the heating stage on NanoXP. At CSM(Continuous Stiffness Method) mode test, heating temperature was $110^{\circ}C,120^{\circ}C,130^{\circ}C,140^{\circ}C$ and $150^{\circ}C$ for PMMA, $140^{\circ}C,150^{\circ}C,160^{\circ}C,170^{\circ}C$ and $180^{\circ}C$ for PC, respectively. Maximum indentation depth was 2000nm. At basic mode test, heating temperature was $90^{\circ}C$ and $110^{\circ}C$ for PMMA, $140^{\circ}C,160^{\circ}C$ for PC. Maximum load was 10mN, 20mN and 40mN. Also indented pattern was observed by using SEM and AFM. Mechanical properties of PMMA and PC decreased when temperature increased. Decrease of mechanical properties from PMMA went down rapidly than that of PC.