• Title/Summary/Keyword: piston position

Search Result 101, Processing Time 0.025 seconds

Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism (일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구)

  • Lee, Jae-Gyu;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

Sensorless Control for a PM Synchronous Motor in a Single Piston Rotary Compressor

  • Cho Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • A sensorless control for an IPM (Interior Permanent Magnet) synchronous motor in a single piston rotary compressor is presented in this study. The rotor position is estimated from the d-axis and q-axis current errors between the real system and a motor model of the position estimator. The torque pulsation of the single piston rotary compressor is compensated to reduce speed ripples, as well as, mechanical noise and vibration. The proposed sensorless drive enables the compressor to operate at a lower speed which increases energy savings and reduces mechanical noise. It also gives high speed operations by a flux weakening control for rapid air-cooling and heating of the heat pump air-conditioners.

The Influence of the Vane on the Lubrication Characteristics Between the Vane and the Rolling Piston of a Rotary Compressor

  • Cho, Ihn-Sung;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2242-2249
    • /
    • 2006
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor being used for refrigeration and air-conditioning systems was investigated. The Newton-Raphson method was used for a partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results demonstrated that the vane thickness and the center line position of the vane significantly influenced the friction force and the energy loss between the vane and the rolling piston.

An Analytical Study on the Lubrication Characteristics between the Piston Ring and Grooved Cylinder Liner (그루브가 있는 실린더 라이너와 피스톤 링 사이의 윤활 특성에 대한 해석적 연구)

  • 조명래;한동철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.114-120
    • /
    • 2000
  • This paper reports on the theoretical analysis on the lubrication characteristics between the piston ring and the grooved cylinder liner. The circular shape piston ring and two types grooves are consider, and the minimum oil film thickness during the full engine cycle are obtained by using iterative technique. The comparative results of minimum oil film thickness and viscous friction force between the smooth and grooved liner are presented. And various design parameter of piston ring and liner groove are tested. The groove in the liner generally reduces the minimum value of minimum oil film thickness, but the maximum viscous friction force is increased at the minimum film position.

Parameter Identification and Error Analysis of Approximation method for Linear motors (리니어 모터의 매개변수 추정과 근사화의 오차 분석)

  • Nam, Jae-Wu;Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.61-68
    • /
    • 2012
  • In this paper, a closed-loop sensorless stroke control system for a linear compressor has been designed. In order to estimate the piston position accurately, motor parameters are identified as a function of the piston position and the motor current. These parameters are stored in ROM table and used later for the accurate estimation of piston position. The identified motor parameters are approximated to the several surface functions in order to decrease memory size. They can also be divided into 2 or 4 subsections to decrease identification errors. The effect of the order of surface functions and division of subsections on identification errors and computation time is analyzed.

Investigation of the Tribological Effects of the Auxiliary Inner Ring for Piston Shoes at Low Speeds (저속에서 피스톤 슈 내부 보조 링의 윤활 효과 분석)

  • Lee, S.L.;Kim, J.H.;Hong, Y.S.;Kim, B.K.;Moon, J.S.;Moon, J.H.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • In order to design a swash plate type pump for electro-hydrostatic actuators the performance of the hydrostatic piston shoe bearings in the low speed range needs to be examined, since the pump operates frequently at low speeds, compensating for position control errors as a control element. As a common practice, piston shoes are equipped with inner rings as an auxiliary element to enhance their tribological performance. In this paper, the effects of the inner rings of the piston shoes on the frictional loss and leakage flow rate were investigated, where three piston shoe models, with different inner ring shapes and different inlet orifice sizes, were integrated. The test results showed that a large inner ring and small inlet orifice were advantageous for reducing both the frictional loss and leakage flow rate; this could also be confirmed by computational analyses.

Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing (엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

Monitoring of Rotational Movements of Two Piston Rings in a Cylinder Using Radioisotopes

  • Jung, Sunghee;Jin, Joonha
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 1999
  • A radiotracer technique has been developed to monitor the rotational movement of two piston rings in one cylinder during engine operation. The rings were labeled with two different kinds of radioisotopes, i.e. $^{60}$ Co and $^{192}$ Ir, for identification of the top ring from the second ring. The radiotracers were implanted in a small hole bored on the inner side of each piston ring. The rings were installed in a single cylinder hydrogen engine and three Nal scintillation detectors were mounted around the engine block to measure the gamma radiation. The angle of ring-gap orientation was determined from the radiation counts measured with the three detectors during engine operation. Two windows (upper window for $^{60}$ Co and lower window for $^{192}$ Ir) were set on each ratemeter to count radiation from the two isotopes separately. Procedure to convert the radiation counts to the position of the ring gap was established. With the software programmed with MS-Visualbasic, radiation counts were compared with the reference responses that were measured at angular intervals of 10$^{\circ}$for each piston ring in advance of the experiment. The result was used for the evaluation of the relationship between the orientation of ring-gaps and oil consumption. It was found that an increase in the oil consumption rate of a specific operation condition was closely related to the relative phase angle of the two piston rings.

  • PDF

The Development of the Software for the Geometry Modeling and Generating CNC Machining Data of a Piston (피스톤의 형상 모델링 및 CNC 가공 데이터 산출용 소프트웨어 개발)

  • Lee, Cheol-Soo;Lee, Je-Phil;Kim, Seong-Bok
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.68-78
    • /
    • 1999
  • A noncircular cutting such as a piston cutting has depended on the copy-machining because of its complex shape. But the copy-machining needs a master model and brings about a low quality of the piston caused by being worn out of the master model. And the lower cutting speed reduces the productivity. In this paper, for solving these problems, a specialized software system and its subsequent procedure are presented. The shape of a piston consists of an oval, an offset, recesses, and eccentricities. The paper describes these shapes as a consistent equation that is a function of the rotational angle and the position of longitudinal direction(Z-axis). It is simple to define the characteristic geometry of a piston and to generate a tool path for CNC machining. This paper proposes the a proper structure of a 4-axes CNC(Computerized Numerical Control) lathe for machining the piston. As well as X-axis and Z-axis, are attached to the machine a C-axis for rotation and a Y-axis for higher speedy prismatic motion parallel to X-axis.

  • PDF