• Title/Summary/Keyword: pipelined-SAR

Search Result 2, Processing Time 0.015 seconds

Brief Overview on Design Techniques and Architectures of SAR ADCs

  • Park, Kunwoo;Chang, Dong-Jin;Ryu, Seung-Tak
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.99-108
    • /
    • 2021
  • Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) seem to become the hottest ADC architecture during the past decade in implementing energy-efficient high performance ADCs. In this overview, we will review what kind of circuit techniques and architectural advances have contributed to place the SAR ADC architecture at its current position, beginning from a single SAR ADC and moving to various hybrid architectures. At the end of this overview, a recently reported compact and high-speed SAR-Flash ADC is introduced as one design example of SAR-based hybrid ADC architecture.

Differential Capacitor-Coupled Successive Approximation ADC (차동 커패시터 커플링을 이용한 연속근사 ADC)

  • Yang, Soo-Yeol;Mo, Hyun-Sun;Kim, Dae-Jeong
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper presents a design of the successive approximation ADC(SA-ADC) applicable to a midium-low speed analog-front end(AFE) for the maximum 15MS/s CCD image processing. SA-ADC is effective in applications ranging widely between low and mid data rates due to the large power scaling effect on the operating frequency variations in some other way of pipelined ADCs. The proposed design exhibits some distinctive features. The "differential capacitor-coupling scheme" segregates the input sampling behavior from the sub-DAC incorporating the differential input and the sub-DAC output, which prominently reduces the loading throughout the signal path. Determining the MSB(sign bit) from the held input data in advance of the data conversion period, a kind of the signed successive approximation, leads to the reduction of the sub-DAC hardware overhead by 1 bit and the conversion period by 1 cycle. Characterizing the proposed design in a 3.3 V $0.35-{\mu}m$ CMOS process by Spectre simulations verified its validity of the application to CCD analog front-ends.