• Title/Summary/Keyword: pipeline model

Search Result 402, Processing Time 0.018 seconds

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

Estimation of the Optimum Number of Machines and Equipments for Professional Dairy Farm (낙농 전업농의 기계장치 최적 규모 추정)

  • 유병기;이용범;장진택;이동현;권두중;기광석;성시흥;이대원
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1996
  • A survey was conducted for dairy farmer to estimate the optimum number of machine and equipment in 1994. Labor hours, operation costs and operation methods for each dairy processing were investigated and analyzed for the farmers to find the expected numbers of machine and equipment on the basis of the desired farm scale. And also, the estimated models were compared and analyzed with the conventional models which more than half dairy farmers used bucket milker in tie stall barn. Some of the results are as follows : 1. Analysis results of conventional model showed that a dairy farm could raise to 15 heads of dairy cow with family labor of 1.5 men, labor hours of 2, 700 in you and total operation costs of 734 thousand won per head. 2. The result, used in conjunction with minimum operation costs in tie stall barn, showed that 28 dairy cows could be raised by using concentrates feeding by hoppers, water supply by water cups, milking by pipeline milker, and manure cleaning by barn cleaner with total operation costs of 520 thousands won per head. 3. The total operation costs of a loose barn system is higher than those of tie stall barn system to raise about 30 heads. For the loose barn system, the herringbone parlour was used for milking, concentrate feeding by automatic concentrate feeder, water supply by thermal insulation feeder, and manure cleaning by scraper with total operation costs of 582 thousands won per head every year.

  • PDF