PHAM, Thi My Ni;PHAM, Thi Ngoc Thao;NGUYEN, Ha Phuong Truc;LY, Bao Tuyen;NGUYEN, Truc Linh;LE, Hoanh Su
The Journal of Asian Finance, Economics and Business
/
v.9
no.5
/
pp.273-283
/
2022
Banking and finance is a broad term that incorporates a variety of smaller, more specialized subjects such as corporate finance, tax finance, and insurance finance. A virtual assistant that assists users in searching for information about banking and finance terms might be an extremely beneficial tool for users. In this study, we explored the process of searching for information, seeking opportunities, and developing a virtual assistant in the first stages of starting learning and understanding Vietnamese to increase effectiveness and save time, which is also an innovative business practice in Use-case Vietnam. We built the FIBA2020 dataset and proposed a pipeline that used Natural Language Processing (NLP) inclusive of Natural Language Understanding (NLU) algorithms to build chatbot applications. The open-source framework RASA is used to implement the system in our study. We aim to improve our model performance by replacing parts of RASA's default tokenizers with Vietnamese tokenizers and experimenting with various language models. The best accuracy we achieved is 86.48% and 70.04% in the ideal condition and worst condition, respectively. Finally, we put our findings into practice by creating an Android virtual assistant application using the model trained using Whitespace tokenizer and the pre-trained language m-BERT.
International conference on construction engineering and project management
/
2013.01a
/
pp.279-286
/
2013
This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.
In order to improve the mixing effect of slurry-foam during the preparation of foam concrete, this study takes an SK static mixer as the mixing device, establishes a three-dimensional physical model and a theoretical calculation model, and numerically simulates the effects of different parameters such as foam inlet angle and pipe inner diameter on the mixing of cement slurry and foam under the given boundary conditions, so as to optimize the structure of this mixing device. The results show that when the pipe diameter of the mixer is larger than 60 mm, the phenomenon of backflow occurs in the pipe, which affects the mixing effect. The smaller the pipe diameter, the shorter the distance required to stabilize the cross-sectional average density and density uniformity index. When the foam inlet angle is different, the average density and density uniformity index of the radial cross-section have the same rule of change along the length of the pipeline, and all of them tend to stabilize gradually. At Y = 0.5 m, the average density basically stabilizes at 964 kg/m3 and remains stable until the outlet. At Y = 0.6 m, the density uniformity index basically stabilizes above 0.995 and remains stable until the outlet. Except for the foam inlet position (Y = 0.04 m), the foam inlet angle has little effect on the cross-sectional average density and density uniformity index. Under the boundary conditions given in this study, a pipe diameter of 40 mm, a foam inlet angle of 90°, and a pipe length of 700 mm are the optimal geometries for the preparation of homogeneous foam concrete with a density of 964 kg/m3 in this static mixer.
Park, No-Suk;Kim, Soonho;Lee, Young Joo;Yoon, Sukmin
Journal of Korean Society of Environmental Engineers
/
v.38
no.2
/
pp.87-95
/
2016
Turbidity is a key indicator to the user that the 'Discolored Water' phenomenon known to be caused by corrosion of the pipeline in the water supply system. 'Discolored Water' is defined as a state with a turbidity of the degree to which the user visually be able to recognize water. Therefore, this study used data mining techniques in order to estimate turbidity changes in water supply system. Decision tree analysis was applied in data mining techniques to develop estimation models for turbidity changes in the water supply system. The pH and residual chlorine dataset was used as variables of the turbidity estimation model. As a result, the case of applying both variables(pH and residual chlorine) were shown more reasonable estimation results than models only using each variable. However, the estimation model developed in this study were shown to have underestimated predictions for the peak observed values. To overcome this disadvantage, a high-pass filter method was introduced as a pretreatment of estimation model. Modified model using high-pass filter method showed more exactly predictions for the peak observed values as well as improved prediction performance than the conventional model.
Natural gas consumption in Asia is growing at fast tempo because of various factors such as economic growth in the region, urbanization, coal-to-gas switch at power and industry sector. Due to geographical characteristics and lack of international pipeline connections between countries in the continent, majority of natural gas exported to Asian consumers is transported by tankers on the sea in the form of liquefied natural gas. As Asian market is the most lucrative market with the fastest demand growth, the competitions between LNG sellers for market share in Asian market are strengthening. The competitions accelerated, especially after the introduction of large volume of incremental supply into the market by new exporters from the U.S., Australia, and Russia. Cheniere Energy, the first exporter of liquefied natural gas (LNG) in the lower 48 states of U.S. has not adopted the traditional price formation mechanism and business model. Traditionally, prices of long-term LNG contracts have been indexed to the price of competing fuels, such as crude oil. The company adopted a pricing mechanism and business model based on a cost-plus system. Cheniere Energy opted for the safer and the risk-free pricing system, that annually guarantees a fixed amount of revenue to the seller. The company earns the same amount of money, regardless of natural gas price dynamics in the domestic and international market, but possibly with less revenue. However, by introducing and successfully implementing the safer and risk- free business model, Cheniere Energy, a company of a relatively smaller size in comparison with major oil and gas companies, became an example to other smaller-sized companies in the U.S. The company's business model demonstrated how to enter and operate LNG business amid increasing competitions among sellers in the U.S. and international market.
KIPS Transactions on Software and Data Engineering
/
v.12
no.10
/
pp.461-470
/
2023
While speech animation generation employing deep learning has been actively researched for English, there has been no prior work for Korean. Given the fact, this paper for the very first time employs supervised deep learning to generate Korean speech animation. By doing so, we find out the significant effect of deep learning being able to make speech animation research come down to speech recognition research which is the predominating technique. Also, we study the way to make best use of the effect for Korean speech animation generation. The effect can contribute to efficiently and efficaciously revitalizing the recently inactive Korean speech animation research, by clarifying the top priority research target. This paper performs this process: (i) it chooses blendshape animation technique, (ii) implements the deep-learning model in the master-servant pipeline of the automatic speech recognition (ASR) module and the facial action coding (FAC) module, (iii) makes Korean speech facial motion capture dataset, (iv) prepares two comparison deep learning models (one model adopts the English ASR module, the other model adopts the Korean ASR module, however both models adopt the same basic structure for their FAC modules), and (v) train the FAC modules of both models dependently on their ASR modules. The user study demonstrates that the model which adopts the Korean ASR module and dependently trains its FAC module (getting 4.2/5.0 points) generates decisively much more natural Korean speech animations than the model which adopts the English ASR module and dependently trains its FAC module (getting 2.7/5.0 points). The result confirms the aforementioned effect showing that the quality of the Korean speech animation comes down to the accuracy of Korean ASR.
Mingyu Jeong;Jeonghyun Noh;Janghyun Kim;Seongheon Ha;Taeseon Kang;Byounghak Lee;Kiryong Kang;Junhyeon Kim;Jinsun Park
Smart Media Journal
/
v.13
no.2
/
pp.52-61
/
2024
In the shipyard, aerial images are acquired at regular intervals using Unmanned Aerial Vehicles (UAVs) for the management of external storage yards. These images are then investigated by humans to manage the status of the storage yards. This method requires a significant amount of time and manpower especially for large areas. In this paper, we propose an automated management technology based on a semantic segmentation foundation model to address these challenges and accurately assess the status of external storage yards. In addition, as there is insufficient publicly available dataset for external storage yards, we collected a small-scale dataset for external storage yards objects and equipment. Using this dataset, we fine-tune an object detector and extract initial object candidates. They are utilized as prompts for the Segment Anything Model(SAM) to obtain precise semantic segmentation results. Furthermore, to facilitate continuous storage yards dataset collection, we propose a training data generation pipeline using SAM. Our proposed method has achieved 4.00%p higher performance compared to those of previous semantic segmentation methods on average. Specifically, our method has achieved 5.08% higher performance than that of SegFormer.
This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.
Kim, Seong-Won;Kim, Dohwan;Choi, Doo Yong;Kim, Juhwan
Journal of Korea Water Resources Association
/
v.46
no.7
/
pp.745-754
/
2013
The systematic analysis and evaluation of required energy in the processes of drinking water production and supply have attracted considerable interest considering the need to overcome electricity shortage and control greenhouse gas emissions. On the basis of a review of existing research results, a practical method is developed in this study for evaluating energy in water supply networks. The proposed method can be applied to real water supply systems. A model based on the proposed method is developed by combining the hydraulic analysis results that are obtained using the EPANET2 software with a mathematical energy model on the MATLAB platform. It is suggested that performance indicators can evaluate the inherent efficiency of water supply facilities as well as their operational efficiency depending on the pipeline layout, pipe condition, and leakage level. The developed model is validated by applying it to virtual and real water supply systems. It is expected that the management of electric power demand on the peak time of water supply and the planning of an energy-efficient water supply system can be effectively achieved by the optimal management of energy by the proposed method in this study.
Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.