• 제목/요약/키워드: pipe wall thickness

검색결과 145건 처리시간 0.03초

Development of wall-thinning evaluation procedure for nuclear power plant piping - Part 2: Local wall-thinning estimation method

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2119-2129
    • /
    • 2020
  • Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and flashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in field experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is difficult to estimate wall-thinning exactly whether the significant thinning has occurred in the inspected components or not. In the previous study, the authors presented an approximate estimation procedure as the first step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical significance was quantified for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using subgrouping of measured thinning values at all measurement grids. The new procedures were also quantified for their statistical significance. As the results, it is confirmed that the new methods have better estimation confidence than the methods having used until now.

A study on forming analysis for the soft pipe bending process of thickness guarantee (연질파이프의 두께보증형 벤딩공정에 대한 성형해석에 대한 연구)

  • Jung, Dong-Won;Jeong, Ji-Hyun;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.66-71
    • /
    • 2013
  • Soft bending pipe is widely used for freezing equipment and shipbuilding. These pipe have some problems that they cause occasionally outside wrinkle, crack, wall thinning phenomena. However, vending machines which have been made to solve the problems completely, are not yet. In this study, to settle these problems, we proved the effectiveness of the self-made mandrel by results of simulation as the basic for the development of precision high-quality vending machine ; presents the solution method of the wall thinning phenomena by analyzing circular deformation and damage of bending pipe.

Effect of leg of fillet on stress distribution in weldments of large steel water pipes (수도용 대형 강관 용접부의 응력분포에 미치는 각장(leg of fillet)의 영향)

  • 김성도;배강열;나석주
    • Journal of Welding and Joining
    • /
    • 제10권3호
    • /
    • pp.54-62
    • /
    • 1992
  • Large steel water pipes are joined prevalently by bell and method and welded at inside and outside of lapped parts. According to the Korean Standard(KS) for fabrication of water pipes, the weldments are designed to have the length of leg which is same as or larger than the thickness of the pipe. It is recently pointed out that the standard size of weldments is too large, which results in an excessive consumption of material and labor. In this study, several cases of weldments having different sizes were investigated to reduce the length of leg to the effective size. For each case, the analysis of stresses was carried out to evaluate the safety of the welded pipes by using a package program, ANSYS, under the consideration of the loading condition of water pipes which includes the soil pressure on the pipe, the load over the road, and temperature change of the pipe. The results of this study revealed that the weldment which has the length of leg of the size over 0.7*thickness of the pipe could provide a stress level below the yield strength. Especially when the length of leg is 85% of the wall thickness, the maximum equivalent stress is only slightly higher than that of the leg of fillet of the size of 1.0*pipe thickness.

  • PDF

Reliability Analysis of UT Measurement for Evaluating Pipe Wall Thinning in Nuclear Power Plants (배관감육 평가를 위한 UT 측정 신뢰도 분석)

  • Yun, Hun;Hwang, Kyeong-mo
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.129-134
    • /
    • 2012
  • UT(Ultrasonic Test), one of the non-destructive tests, is the most common thickness measurement method for evaluating the wear rate in NPPs(Nuclear Power Plants). UT is used widely because it is easy and safe for use. However some amount of error inevitably occurs in attempting to measure the thickness. The error, that could make the thickness data thicker or thinner, may affect estimation of wear rate in pipes. NPPs are composed of a lot of pipes and components. Some of them are tested to check the current status during RFO(Re-Fueling Outage). Reliability analysis of UT is essential for evaluating pipe wear rate and establishing the long-term management plan in NPPs. This paper reviewed the cause of error occurrence and presented the UT data reliability analysis method. Also, this paper shows the application result of reliability analysis to the UT data acquired in NPPs.

Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness (두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제36권9호
    • /
    • pp.961-970
    • /
    • 2012
  • The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • 제23권5호
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device (B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발)

  • Lee, Dae Young;Suh, Heok Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.

A Study on the Performance Characteristics of a Heat Pipe Combined with PCM (상변화 물질을 조합한 히트파이프의 성능 특성에 관한 연구)

  • Park, Young-Hark;Jung, Eui-Guk;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2119-2123
    • /
    • 2007
  • This study deals with performance characteristics of heat pipe combined with a solid-liquid phase change material(PCM). The outer diameter of the heat pipe was 9.5 mm and the total length was 600 mm, where the evaporator, the adiabatic section and the condenser lengths were equally 200 mm. A paraffin wax having a melting point of 58.5$^{\circ}C$ was used as PCM. The paraffin container was attached to the adiabatic section of the heat pipe. The paraffin container had outer diameter of 18 mm, wall thickness of 1.2 mm and the total length of 100 mm. The heat pipe was tested with tilt angle of horizontal degree and favorite angle 10 degree, with evaporator lower position to provide stable operation of the heat pipe. Input thermal load was varied from 40 W, with increment of 40 W, to above 100 W until the maximum temperature of the heat pipe wall reached 200$^{\circ}C$. Test results of the PCM heat pipe were presented in comparison with conventional heat pipe of the same basic dimensions. The performance was analyzed in terms of temperature distribution, thermal resistance and heat transport capability.

  • PDF

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.

Field investigation and numerical study of ground movement due to pipe pile wall installation in reclaimed land

  • Hu Lu;Rui-Wang Yu;Chao Shi;Wei-Wei Pei
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.397-408
    • /
    • 2023
  • Pipe pile walls are commonly used as retaining structures for excavation projects, particularly in densely populated coastal cities such as Hong Kong. Pipe pile walls are preferred in reclaimed land due to their cost-effectiveness and convenience for installation. However, the pre-bored piling techniques used to install pipe piles can cause significant ground disturbance, posing risks to nearby sensitive structures. This study reports a well-documented case history in a reclamation site, and it was found that pipe piling could induce ground settlement of up to 100 mm. Statutory design submissions in Hong Kong typically specify a ground settlement alarm level of 10 mm, which is significantly lower than the actual settlement observed in this study. In addition, lateral soil movement of approximately 70 mm was detected in the marine deposit. The lateral soil displacement in the marine deposit was found to be up to 3.4 and 3.1 times that of sand fill and CDG, respectively, mainly due to the relatively low stiffness of the marine deposit. Based on the monitoring data and site-investigation data, a 3D numerical analysis was established to back-analyze soil movements due to the installation of the pipe pile wall. The comparison between measured and computed results indicates that the equivalent ground loss ratio is 20%, 40%, and 20% for the fill, marine deposit and CDG, respectively. The maximum ground settlement increases with an increase in the ground loss ratio of the marine deposit, whereas the associated influence radius remains stationary at 1.2 times the pipe pile wall depth (H). The maximum ground settlement increases rapidly when the thickness of marine deposit is less than 0.32H, particularly for the ground loss ratio of larger than 40%. This study provides new insights into the pipe piling construction in reclamation sites.