• 제목/요약/키워드: pipe flow

검색결과 1,644건 처리시간 0.03초

맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • 서영수;정의봉;윤상돈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

맥동하는 유체를 포함하는 3차원 배관계의 진동해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 손인수;안성진;윤한익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF

크랙을 가진 유체유동 파이프의 동특성 해석 (Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack)

  • 유진석;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 윤한익;진종태;손인수
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

주성분 분석을 이용한 상수도 관망의 누수감지 (Leak Detection in a Water Pipe Network Using the Principal Component Analysis)

  • 박수완;하재홍;김기민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

기존 합류식 하수관거에 CSO 제어를 위한 하수분리관의 설치에 관한 연구 (A Study on the Installation of a Sewage Separator Pipe inside an Existing Combined Sewer System for CSO Control)

  • 게라 하이디;김영철
    • 한국습지학회지
    • /
    • 제23권1호
    • /
    • pp.85-93
    • /
    • 2021
  • 유역으로부터 발생되는 강우유출수가 하수관거로 유입되는 것을 방지하기 위하여 별도의 우수전용관을 설치하는 것은 많은 비용이 수반되며 현장 시공여건에 따라 대단히 어려운 경우가 있다. 본 논문에서는 교통 및 도로 여건상 시공이 어려운 곳에 경제적인 접근방법으로 기존의 하수관거에 별도의 하수분리관을 설치하는 단순하면서 혁신적인 방안에 관한 연구결과를 제시하였다. 실험실 규모의 하수관거 실험장치를 통하여 얻은 결과에 따르면 기존의 관거를 하수 및 우수전용 공간으로 분리할 경우 관내유속을 증가시켜TSS, TCOD, TN, TP 퇴적율을 각각 74-88%, 79-90%, 75%, and 67-90%, 정도 감소시킬 수 있는 것으로 나타났다. 또한 3차원 수리유동 모의결과 하수분리관의 설치가 직선구간, 접속구간, 곡선 및 낙차구간에서 하수의 흐름 및 유속분포에 미치는 영향이 미미한 것으로 분석되었다. 그러나 접속구간에 분리관을 설치할 경우 접속면 지역은 유입되는 강우유출수의 운동에너지에 의한 구조물 훼손을 방지하기 위하여 보강해야 할 것으로 판단된다. 또한 곡선부에서 분리관은 곡선부의 안쪽보다는 외곽쪽에 설치하는 것이 구조적으로 안정 적인 것으로 분석된다. 이와 같은 연구결과를 바탕으로 폭 3 m 제원을 갖는 하수관거에는 약 0.4 m × 0.4 m 분리관 설치가 적합한 것으로 나타났다.

부정류 효과를 고려한 조압수조가 있는 상수관망의 파괴확률 (Probability of Pipe Breakage for Pipe Network with Surge Tank regarding Unsteady Effect)

  • 권혁재;이철응
    • 한국수자원학회논문집
    • /
    • 제42권10호
    • /
    • pp.785-793
    • /
    • 2009
  • 본 연구에서는 부정류 상태의 조압수조를 해석 할 수 있는 수치모형이 개발되었다. 그리고 부정류 효과를 고려한 파이프의 파괴확률 산정을 위한 신뢰성 모형이 개발되었다. 파이프 파괴의 상대적 위험도 평가와 조압수조의 기능성 평가를 위해 부정류 효과를 고려한 조압수조가 있는 상수관망 시스템의 파괴확률을 산정하였다. 신뢰성 해석을 통하여 부정류가 파괴확률을 크게 증가 시키는 것을 알 수 있었으며 조압수조가 부정류의 압력을 크게 감쇠시킴으로써 파괴확률을 현저히 저하시키는 것을 확인할 수 있었다.

이동질량을 가진 유체유동 외팔 파이프극 동특성 (Dynamic Characteristics of Cantilever Pipe Conveying Fluid with the Moving Masses)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.550-556
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid. the moving mass upon it and an attacked tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe haute been studied on the dynamic behavior of a cantilever pipe by numerical method. As the velocity of the moving mass increases, the deflection of cantilever pipe conveying fluid is decreased. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. The deflection of the cantilever pipe conveying fluid is increased by moving masses. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced due to the deflection of pipe tilth the effect of moving mass and gravity.

수직관내 고-액 슬러리 유동 계측 실험연구 (Experimental Study of Solid-water Slurry Flow in Vertical Pipe)

  • 최종수;홍섭;양찬규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF