• Title/Summary/Keyword: pipe flow

Search Result 1,642, Processing Time 0.021 seconds

Effects of Tile Drain on Physicochemical Properties and Crop Productivity of Soils under Newly Constructed Plastic Film House (신설 하우스 시설재배지의 파이프 암거배수 효과)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.154-162
    • /
    • 2003
  • This study was conducted to investigate the effects of tile drain on Physicochemical properties and crop productivity of soils under plastic film house for three years (1999 - 2001). Tiles (${\Phi}100mm$ PVC pipe) were established at 50-60 cm depth with 1 m, 2 m, and 3 m intervals in Gangseo silt loam soil under 2W-type plastic film house. Cropping system was a pumpkin-pumpkin in the first year, a cucumber-spinach-crown daisy-spinach-young radish in the second year, and a green red pepper-tomato-spinach in last year, with conventional fertilization and drip or furrow irrigation by groundwater pumping. Bulk density and soil hardness of plot with tile drain were lower than those of control (plot without tile drain). Soil water content was also lower in tile drain plot than in control regardless of soil depth, and decreased at narrower interval and longer distance from tile in the same plot, thus suggesting that water flow and density of tile drain plot was higher than those of control. Rhizosphere of spinach, a final crop of third year, was expanded more than 2 cm due probably to improvement of soil physical properties caused by tiles establishment. Electrical conductivity (EC) of topsoil decreased from $1.22dS\;m^{-1}$ to $0.82dS\;m^{-1}$ by tile drain system, and the extent of EC decrease was different with season: higher in spring and lower in summer and autumn. The $NO_{3^-}-N$ concentration in topsoil decreased, from $200mg\;kg^{-1}$ to $39mg\;kg^{-1}$. The effect of tile drain on crop yield varied with crops. Average crop productivity obtained in tile drain plot than that of control crop: 18.2% in 2 m interval, 14.2% in 3 m interval, but lower 0.2% in 1 m interval.

A Study on the Cause and Improvement of the Red-Water Occurrence in Urban Stream (도심하천 내 적수발생 지점에 대한 원인검토 및 개선방안 연구)

  • Beomjin Eun;Jong Hwan Kim;Zi Yu Lin;Jeong Sook Heo;I Song Choi;Jong-Min Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.166-175
    • /
    • 2023
  • This study aims to identify the cause of the red-water occurrence (the phenomenon of water being red) that occurs at some points and sections of rivers in Yongin City. As a result of conducting a preliminary investigation, total three sites were selected as the investigation point as it was found that the red-water occurrence continued. As a result of the investigation, it is judged that the cause of the red-water in Yongin-city river is due to the soil color and iron content of the region. JPS, SBS, and JJS sites all showed that the color of soil is mainly consist of reddish brown and red-yellow. The average Fe concentration was 13.75 mg/L, 10.85 mg/L, and 1.31 mg/L, for each sites, and considering that the Fe concentration in general river water was less than 0.5 mg/L, it was confirmed that the concentration was quite high. At the JPS and JJS points, the red-water occurrence occurred mainly in stagnant places, which is believed to be strengthened by the reaction of organic and microorganisms. In the case of SBS, the wateris red, but as a result of observing the actual color, it is judged that the iron component deposited in the pipe causes an optical illusion with a deep red color. In addition, it is believed that the iron concentration can be reduced to the general river water concentration range by removing the particulate iron component through a decrease of more than 95% as a result of filtering with glass fiber filter with particulate iron. As a result of this study, it is necessary to manage the river to maintain the flow, and it is believed that the occurrence of red-water at the survey point can be alleviated through uptake action through planting and agglomeration precipitation and agglomeration filtration methods for particulate iron treatment.