• Title/Summary/Keyword: pipe flow

Search Result 1,644, Processing Time 0.031 seconds

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF

Experimental Study on Characteristics of Ammonia Conversion Rate of Urea Aqueous Solution in 250℃ Exhaust Pipe (250℃ 이하 배기관에서 우레아 수용액의 암모니아 전환율 특성에 관한 실험적 연구)

  • Ku, Kun Woo;Park, Hong Min;Hong, Jung Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • The NOx emissions from diesel engines and industrial boilers are a major cause of environmental pollution. The selective catalytic reduction of urea is an aftertreatment technology that is widely used for the reduction of NOx emissions. The objective of this study was to investigate the characteristics of the thermal decomposition of a urea aqueous solution using laboratory-scale experimental equipment under conditions similar to those of marine diesel engines. A 40 wt. urea aqueous solution was used in this study. It was found that the total conversion rate varied with the inflow gas conditions and flow rates of the urea aqueous solution. In addition, there were conversion rate differences between NH3 and HNCO. At inflow gas temperature conditions of $210^{\circ}C$ and $250^{\circ}C$, the $NH_3$ conversion rate was found to be higher than that of the HNCO, depending on the residence time.

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.

Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case - (관류보일러 물-증기 계통의 동적 시뮬레이션 - 아임계 동력보일러 사례 -)

  • Kim, Seongil;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.353-363
    • /
    • 2017
  • The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

Development of a Real Time Control Model for Urban Drainage Systems (도시 내배수시스템 실시간 운영모형의 개발)

  • Jun, Hwandon;Lee, Yang Jae;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.748-755
    • /
    • 2007
  • To develop an efficient pump operating rule for a retard basin, it is necessary to estimate inflow to the retard basin accurately which is affected by the backwater effect at the outlet of the conduit. The magnitude of the backwater effect is dependent on the water depth of a retard basin; however, the depth is determined by the amount of inflow and outflow. Thus, a real time simulation system that is able to simulate urban runoff and the pump operation with the consideration of the backwater effect is required to estimate the actual inflow to a retard basin. With this system, the efficient pump operating rule can be developed to diminish the possible flood damage on urban areas. In this study, a realtime simulation system is developed using the SWMM 5.0 DLL and Visual Basic 6.0 equipped with EXCEL to estimate inflow considering the backwater effect. The realtime simulation can be done by updating realtime input data such as minutely observed rainfall and the depth of a retard basin. Using those updated input data, the model estimates actual inflow, the amount of outflow discharged by pumps and gates, the depth of each junction, and flow rate at a sewer pipe on realtime basis. The developed model was applied to the Joonggok retard basin and demonstrated that it can be used to design a sewer system and to estimate actual inflow through the inlet sewer to reduce the inundation risk. As results, we find that the model can contribute to establish better operating practices for the pumps and the flood drainage system.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Song, Yoon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

The characteristics of temperature distribution, NOx and CO formation in a MILD combustor with the variation of equivalence ratio (당량비 변화에 따른 MILD 연소로의 온도 분포 및 NOx, CO 생성 특성)

  • Ha, Ji-Soo;Yu, Sang-Yeol;Sim, Sung-Hoon;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.485-490
    • /
    • 2010
  • MILD (Moderate and Intense Low Oxygen Dilution) combustion is a technique which is able to reduce NOx formation and to uniform temperature distribution in the furnace by recirculating the exhaust gas to the fresh air and fuel. This study focuses on finding optimal condition of MILD combustor by changing equivalence ratio with fuel and air flow. The present experiment employs six thermocouple sensors in the furnace, and two concentration probes of NOx and CO at the exhaust exit pipe respectively. The MILD combustion phenomena have been observed at the condition of equivalent ratios of 0.71~0.73, and the temperature uniformity, NOx and CO concentration are also examined at the MILD combustion condition.

System Design and Performance Test of Hydraulic Intensifier (유압 충격압력 발생기의 시스템 설계와 성능평가)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

A Study of the Guided Wave Propagation in the Water Supplying Pipes with Scale (스케일이 있는 급수관내의 유도초음파의 전파 특성에 관한 연구)

  • Song, Sung-Jin;Lee, Dong-Hoon;Lee, Hyun-Dong;Bae, Cheol-Ho;Park, Jung-Hoon;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Since the scale in pipes reduces the flow rate, a quantitative evaluation of the scale is essential for the proper maintenance of pipes. Guided waves were employed to estimate the amount of scale in water supplying pipes. Using variable angle wedge, several modes of guided waves wire generated and their propagation charcteristics along the pipes with stale were analyzed. It was experimentally observed that the amplitude of F(M,2) modes at $f{\times}d=1.5MHz\;mm$ decreased significantly with increasing amount of scale. The present study showed that F(M,2) modes were optima) to evaluate the scale in water supplying pipes.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.