• Title/Summary/Keyword: pipe diameter

Search Result 799, Processing Time 0.027 seconds

The Proposal of a New Drainage System without Incline of Piping and Experiment on Drainage Flow Characteristics (구배가 없는 신배수시스템의 제안 및 배수유동 특성에 관한 실험적 연구)

  • Cha Young-Ho;Yee Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.452-458
    • /
    • 2005
  • In Korea, pumping pipe using gravity way by water is most popular method in drainage system. But, it is difficult to repair a drainpipe in this method because the drain pipe diameter is increased as using this method. In this research, we propose a new drainage system. The system aim for an adaptedness with buildings, freedom of plan, construction and renewal in water pipe equipments, etc. The new system is not need of incline of piping, and it uses drainage power that is changed potential energy by high velocity flow as making Siphonage at vertical pipe. Therefore, the diameter of piping can decreased than existing piping system established in the ceiling. Also because connecting position will be located at the lower part, it is changed the potential energy of drainage to the high velocity flow. In addition, drainage will be smooth because the fixture drain is linked by each drain pipes.

Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery (저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성)

  • 이욱현;임용빈;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending (프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구)

  • Park, G.B.;Kang, B.K.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.

The Experimental Study of Scale Removal Using Ultra High Water Pressure in the Old Steel Water Pipe (초고압수를 이용한 노후한 도수 강관 내 스케일 제거에 대한 실험적 연구)

  • Seo, Taewon;Kim, Jin-Dong;Seo, Hyun-Won;Kim, Taedong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.405-409
    • /
    • 2008
  • This technical paper is proposing a sound concept in the application of the rehabilitation method of the water supply steel pipe in the large diameter ranged from 1,800mm to 3,500mm. There were conducted the experimental tests for the specimens as well as the real steel pipe of diameter 2,200mm. The water pressure ejected from nozzle tip should be at least 2,500bar to have the satisfied surface profiles required in the design criterion. The most difficult thing is to keep the water pressure at the nozzle tip as 2,500bar during the consecutive work in the interval of the work site more than 1km. It is found that the method suggested in this study is adequate method to meet the specified design criteria. The results of this study provide the useful information how to setup the equipments for the successful work. This method also provides not only the omission of the blasting process but also the effect of the budget reduction.

Pump and Temperature Effects on Drag Reducing Additives in Turbulent Pipe Flows (난류 관유동에서 마찰저항감소 첨가제에 대한 펌프와 온도의 영향)

  • Park, S.R.;Suh, H.S.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.330-337
    • /
    • 1996
  • The effects of pump and temperature on drag reducing characteristics were investigated with a polymer(PAAM : Polyacrylamide) and three kinds of surfactants(CTAC, STAC, Habon-G) in fully developed turbulent pipe flows with various experimental parameters such as additive concentration(30~500ppm), pipe diameter(4.65mm, 10.85mm), Reynolds number($4{\times}10^4{\sim}10^5$) and working fluid temperature($20{\sim}80^{\circ}C$). The pump effect on PAAM was severe such that the drag reduction rates obtained with pump were decreased upto 30% as compared with those obtained with compressed air in 4.65mm test section. The temperature effect on PAAM was noticeably considerable, that is, the higher temperaute, the less drag reduction rate. On the other hand, no significant pump effect on the surfactants was observed. The drag reducing effectiveness of CTAC was totally lost in the temperature ragne of 60 to $80^{\circ}C$, whereas STAC and Habon-G kept their distinct drag reducing capability at a temperature of $80^{\circ}C$. This study clearly elucidated that for DHC application of drag reducing additives, the pump and temperature effects as well as additive concentration and pipe diameter should be carefully taken into consideration.

  • PDF

FE analysis of RC pipes under three-edge-bearing test: Pocket and diameter influence

  • Kataoka, Marcela Novischi;da Silva, Jefferson Lins;de Oliveira, Luciane Marcela Filizola;El Debs, Mounir Khalil
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • This paper studies on the behavior of reinforced concrete (RC) pipes used in basic sanitation in the conduction of storm water and sanitary sewer. Pipes with 800 mm and 1200 mm in diameter were analyzed. The 800 mm pipes were built with simple reinforcement and the 1200 mm pipes with double reinforcement. For the two diameters of pipes the presence or absence of the pocket was evaluated, and the denomination of each one is spigot and pocket pipe (SPP) and ogee joint pipe (OJP), respectively. The 3D numerical models reproduce the three-edge-bearing test that provides information about the strength and stiffness of the reinforced concrete pipes. The validation of the computational models was carried out comparing the vertical and horizontal displacements on the springline and crown/invert and it was also evaluated the reinforcement strains and the crack pattern. As a main conclusion, the numerical models represented satisfactorily the behavior of the pipes and can be used in future studies in parametric analysis.

Study on Support Span Optimization of Pipeline System Considering Seismic Load (지진 하중을 고려한 배관시스템의 지지 스팬 최적화에 관한 연구)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.627-635
    • /
    • 2020
  • In this study, the optimal support span determination of pipeline system was carried out in consideration of the effects of seismic loads. The theoretical support and structural analysis were used to determine the optimal support span of piping system according to pipe diameter using theoretical and structural deflection criteria. The reliability of the analysis results was secured by comparing the structural and theoretical results. In particular, the optimum support span of piping system was obtained by considering the effects of seismic load, and the optimal support span of pipe diameter and piping system tended to be proportional to each other. When considering the effects of earthquakes on different pipe diameters(300~2,500mm), the span length is reduced by up to 48% at the allowable stress criterion, and the pipe span length is reduced by up to 5.9% at the deflection criterion. It can be seen that the effect of the seismic load on the determination of the piping span length has a greater effect on the stress than the displacement.

Effect of Diameter and Thickness on the Failure Location and Orientation of 90° Elbows Under In-plane Mode Cyclic Bending (In-plane 모드 반복굽힘 조건에서 90° 엘보우의 손상 위치와 방향에 미치는 직경과 두께 영향)

  • Jin Ney Hong;Jin Weon Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.77-86
    • /
    • 2022
  • This study investigates the effect of the diameter and thickness on crack initiation location and orientation of 90° elbows under in-plane mode displacement-controlled cyclic bending loads. Finite element (FE) analysis of cyclic failure test is conducted for elbow specimens under in-plane mode displacement-controlled cyclic bending to identify the parameters affecting crack location and orientation. Furthermore, parametric FE analysis of the pipe elbows with various pipe nominal sizes and Schedules is performed, and the crack location and orientation from the results of FE analysis are determined. It is found that the crack location and orientation in the pipe elbows are determined mianly by the radius to thickness ratio of pipe elbows (Rm/t). It is also found that the presence of internal pressure slightly increases the value of Rm/t at which the failure mode changes.

Long-Term Life Test of A Stainless Steel-Sodium Heat Pipe (스테인리스 스틸-나트륨 히트파이프의 장기 수명 시험)

  • Park, S.Y.;Jung, E.G.;Boo, J.H.;Kang, H.K.;Yoo, J.H.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1058-1062
    • /
    • 2004
  • High-temperature cylindrical stainless steel/sodium heat pipe was manufactured and tested under long-term operation. The container material was stainless steel 316L and the working fluid was sodium. The heat pipe was 25.4 mm in diameter and 1000 mm in length with a two-layer screen mesh wick. The evaporator part was 600 mm and the condenser part was 300 mm in length. Total measurement points on heat pipe were 15 points and 12 points were located in condenser part. The heat pipe was heated for 142 days(3400 hours) at $800^{\circ}C$. In the test period, the maximum temperature difference was increased from $18^{\circ}C$ o $28^{\circ}C$ and the maximum thermal resistance was as low as $0.015^{\circ}CW$.

  • PDF

Experimental Study of Load Characteristics of Buried and Exposed Large-Diameter Pipelines Using Fiber-Optic Strain Sensor

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.194-201
    • /
    • 2020
  • In this study, an optical-fiber sensor was used to measure loads that could act in an environment similar to the loading conditions that exist in an actual pipe. The structure and the installation method of the optical-fiber strain sensor were applied considering the actual large pipe and the buried pipe environment. Load tests were performed using a displacement sensor and sandbags to determine the deflection of the pipe according to the external load, and the linear measurement results were verified. Considering the conditions that could exist in the actual pipe, the test method was presented, and the strain of the buried pipe generated at this time was measured.