• Title/Summary/Keyword: pipe cooling

Search Result 414, Processing Time 0.03 seconds

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

The Experimental Study of Miniature Heat Pipes for Cooling Microprocessor Chips (전자칩 냉각을 위한 소형 히트 파이프에 대한 실험적 연구)

  • Lee, S.M.;Kim, H.B.;Yang, J.S.;Lee, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.353-358
    • /
    • 2000
  • This paper presents the experimental investigation about miniature heat pipe for notebook PC. The focus of analysis is the operating temperature not to exceed $65^{\circ}C$ maximum allowable CPU surface temperature. Copper is used to heat pipe material and brass is wick material, and working fluid is selected to water. This cooling system is heat spreader method using a aluminum plate, since this method is most commonly used. According to the present study, heat for 3mm heat pipe, 8W, and for 4mm heat pipe, 10W, is found to power dissipation limit respectively, Soon after this investigation, sufficient long term life test should be followed.

  • PDF

Fabrication and Characteristics Test of Micro Heat Pipe Array for IC Chip Cooling (IC 칩 냉각용 초소형 히트 파이프의 제작 및 성능 평가)

  • 박진성;최장현;조형철;조한상;양상식;유재석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.351-363
    • /
    • 2001
  • This paper presents an experimental investigation on the heat trensfer characteristic of micro pipe (MHP) array with 38 triangular microgrooves. A heat pipe is an effective heat exchanger operating without external power. The heat pipe transfers heat by means of the latent heat of vaporization and two-phase fluid flow driven by the capillary force. The overall size of the MHP array can be put undermeath a microelectonic die and integrated into the electrronic package of a microelectronin device to dissipate the heat from the die. The MHP array is fabricated by micromachining with a silicon wafer and a glass substrate. The MHP was filled with water and sealed. The experimental results show the temperature decrease of 12.1$^{\circ}C$ at the evaporator section for the input power of 5.9 W and the improvement of 28% in the heat transfer rate.

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System (모세유관 바닥복사 냉·난방 시스템의 성능평가)

  • Seo, Yu-jin;Kim, Taeyeon;Leigh, Seung-bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

Themal Stress Analysis of the Heat of Hydration Considering Pipe-Cooling (파이프 쿨링을 고려한 수화열 해석기법에 관한연구)

  • 긴진근;김국한;최계식;양주경;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.274-279
    • /
    • 1995
  • The heat of hyderation of cement causes the internal temperature rise and volume change at early age, paticular in massive concrete structures. As the results of the temperature rise and extenal restraint conditions, the themal stress may induce cracks in concrete. Therefore various techenuques of the themal stress control of the mass concrete has been widely used. One of these techniques is pipe-cooling which is considered in this study. The objective of this paper is to develop finite element program which is capable of simulating the temperature history and the thermal stress considering pipe-cooling, creep and the modified elastic modulus dud to maturity effect.

  • PDF

Development of Micro Cooling System for Telecommunication System using Oscillating Heat Pipe (진동 세관형 히트파이프를 이용한 통신 기기용 마이크로 냉각시스템의 개발)

  • Ha, Soo-Jung;Bae, Nae-Soo;Park, Chul-Min;Kim, Jung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1499-1505
    • /
    • 2003
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices. So, in this paper, characteristics on oscillating heat pipe according to operating conditions(environment temperature, charging ratio of working fluid, inclination) based on experimental study was investigated. From the experimental results, $25^{\circ}C$environment temperature), R-141b(working fluid)40%(charging ratio) was best performace at others of inclination angle and The top heating mode of OCHP performed 80% efficiency of the bottom heating mode.

  • PDF

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future and its Economic Evaluation (미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템 및 경제성 평가)

  • Lee Yoon-Pyo;Ahn Young-Hwan;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.776-782
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.