• Title/Summary/Keyword: pinching

Search Result 174, Processing Time 0.024 seconds

Fundamental Study on Mechanism of Strip Pinching in Rolling (압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • Lee Chang Woo;Shin Kee Hyun;Hong Wan Kee;Jung Dong Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.

Fundamental Study on Pinching Mechanism in Hot Strip Mill (사상 압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • 신기현;권순오;이창우;안영세;정동택;홍완기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1091-1096
    • /
    • 2003
  • It is very important to find out causes of strip pinching for the high quality of products and for the stable operation of hot roiling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in hot rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Tongue tail) across the CMD were found to provide possible major causes of strip pinching.

  • PDF

Effect of Planting Time and Pinching Method on the Growth and Quality of Cut Flowers in Chrysanthemum 'Jinba' (절화국화 '진바'의 정식시기와 적심방법이 생육과 절화품질에 미치는 영향)

  • Cho, Myeong-Whan;Kang, Nam-Jun;Rhee, Han-Cheol;Kwon, Joon-Kook;Choi, Gyeong-Lee;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • In this experiment, the effects on the growth and the quality of cut flowers of chrysanthemum 'Jinba' were mainly concerned depending on cultural methods between the pinching and the non-pinching. According to the results, the sufficient period of the vegetative growth was necessary to enter the flower bud differentiation in case of the non-pinching cultivation whereas it was not the case on the pinching. As compared with the pinching, the non-pinching showed 10% higher in the flowering ratio after flower bud differentiation. The flowering ratio of the non-pinching exceeded more than 95% but the pinching showed below 95% of the flowering ratio after flower bud differentiation. Comparing the number of cutting flowers between pinching and non-pinching, it was the non-pinching that showed the production of the first grade cutting flowers about 5 weeks faster than that of the pinching. It seem to be possible that harvesting time and growing period could be shortened. In the non-pinching growing region, above third-grading marketable cut flowers was 100% regardless of planting time. On the contrary, the pinching method showed 84.7% of marketable cutting flowers at first week from the planting, followed by 64.3% at second week, 18.8% at third week, and 2.6% at fourth week. Marketability of cutting flowers indicates that were planted by the pinching is very poor. When draw a comparison between the fourth-week planting of the non-pinching with the first-week planting of the pinching, the non-pinching could cut the growing period 38 days shorter than the pinching and the marketability was better. These results indicate that the non-pinching method can shorten the growing period and harvesting time compared to the pinching and it also resulted in reduction of cost and rapid production of the cutting flowers.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Effects of Pinching on Shoot Growth, Flowering and Covering Using a Pregola in Lonicera sempervirens (붉은꽃인동덩굴의 생육, 개화 및 벽면 피복에 미치는 적심 효과)

  • Kim, Jae Yeong;Yoo, Bong Sik;Jeong, Myeong il;Lee, Dong Woo;Kim, Mi Sun;Kim, Young Chul
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.2
    • /
    • pp.88-92
    • /
    • 2009
  • This experiment was conducted to find out the effects of pinching on shoot growth, flowering and covering of Lonicera sempervirens growth in containers. 180 cm high pinching of plants increased shoot length compared to 60 cm low pinching and decreased lateral shoot numbers, but there was no difference in branch numbers by the pinching methods. Covering rates of the pergola were 85% with 60 cm low pinching, 74% with 120 cm middle pinching, and 62% with 180 cm high pinching. The pinched plants continued to flower from the middle of May to the middle of September. The first flowering time was in the middle of May in low pinching and in the early of June in middle and high pinching. The lower pinching height and the earlier pinching time induced earlier flowering time, and the peak flowering of pinched plants was in mid-August. To cover over 85% of the pergola screen with 3.0 m wide and 2.2 m high, two plants per 1 m needed to grow and to pinch at 60 cm height.

Effect of Alternative Row Pinching on Growth and Yield in Soybean (열간 교호 적심이 콩의 생육 및 수량에 미치는 영향)

  • Kim Ik Je;Son Seok Yong;Nam Sang Young;Ryu In Mo;Kim Tae Jung;Lee Cheol Hee;Kim Tae Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.457-462
    • /
    • 2004
  • Lodging is one of the most serious problems in soybean cultivation. Therefore, improved cultural methods to reduce lodging as well as to increase photosynthetic ability should be mostly desirable to increase soybean production. The test variety was 'Hwangkeumkong' which was pinched at V7 stage. The greatest difference in canopy height between rows was shown when every other row was pinched, which also recorded the most effective reduction in lodging. The 9th leaf of soybean plants in non-pinching rows of alternative non-pinching and pinching plot showed the highest photosynthetic ability due to the greatest difference in canopy height. Although leaf area index was higher in pinched rows in average after 17 August, alternative pinching of every other row recorded the highest LAI on 5 September. Alternative pinching of every other row resulted $2\~14\%$ higher yield than non-pinching or complete pinching due to the increases of number of grains in the upper part of main stem and average grain weight of non-pinching rows and in alternative pinching.

Effect of Topping Time on Growth and Quality in Glycyrrhiza uralensis (적심시기가 감초의 생육 및 품질에 미치는 영향)

  • Nam, Sang-Young;Kim, In-Jae;Choi, Seong-Yel;Kim, Young-Ho;Song, In-Gyu;Lee, Guang-Jae;Park, Jae-Ho;Kim, Tae-Jung
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • This study was performed to evaluate the effect of pinching time on growth and quality of Glycyrrhiza uralensis soil cultured in Chungbuk Agricultural Research and Extension Service from 2008 to 2009. The treated pinching time were given as the June 30, July 30, August 30, and non-pinching (control). The amounts of pinching were 20% of stem length each plant. The obtained results from this study were summarized as follows; The plant height and number of branches were higher in control than pinching treatments. The stem and leaf weight were increase with early pinching. The plant height and stem diameter were not affected by pinching time. There was no regular trends in runner growth. We found that pinching was induced root growth, and early pinching was accelerated root growth. The root yield was increased in JUN and JUL pinching treatments as 11-30% in 2 years plants and 6-11% in 3 years plants compared to control as 238 kg/10a and 432 kg/10a, respectively.

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

Pinching Mechanism of Reinforced Concrete Elements (철근콘크리트 부재의 핀칭 메커니즘에 대한 연구)

  • Kim, Ji-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

Flexural Pinching and Energy Dissipation Capacity (휨핀칭과 에너지 소산능력)

  • 박흥근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.275-285
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to energy dissipated by re-bars rather than concrete that is a brittle material, and that it is not related to magnitude of axial compressive force applied to the member. Therefore, for a member with specific arrangement and amount of re-bars, the energy dissipation capacity remains uniform regardless of the flexural strength that is changed by the magnitude of axial force applied. Due to the uniformness of energy dissipation capacity pinching appears in axial compression member. The flexural pinching that is not related to shear force becomes conspicuous as the flexural strength increases relatively to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating energy dissipation capacity and damping modification factor was developed and verified with existing experiments.

  • PDF