• 제목/요약/키워드: pile-supported structure

검색결과 53건 처리시간 0.017초

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

잔교식 안벽 해석시 수평지반반력계수의 적용 (Application of the Lateral Subgrade Reaction Modulus in Landing Pier)

  • 박시범;김지용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구 (Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point)

  • 윤정원;한진태
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

Evaluation of the effect of rubble mound on pile through dynamic centrifuge model tests

  • Jungwon Yun;Jintae Han
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.415-425
    • /
    • 2023
  • Pile-supported wharves, port structures that support the upper deck, are installed on sloping ground. The sloping ground should be covered with a rubble mound or artificial blocks to protect the interior material from erosion caused by wave force. The behavior of the pile may vary during an earthquake if a rubble mound is installed on the slope. However, studies evaluating the effect of rubble mound on the pile during an earthquake are limited. Here, we performed dynamic centrifuge model tests to evaluate the dynamic behavior of piles installed in a slope reinforced with rubble mound. In the structure, some sections (single-pile, 2×2 group-pile) were selected for the experiment. The moment of the group-pile decreased by up to 26% upon installation of the rubble mound, whereas the moment of the single-pile increased by up to 41%, thus demonstrating conflicting results.

원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가 (Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test)

  • 유민택;이명재;백민철;추연욱;이일화
    • 한국지반공학회논문집
    • /
    • 제35권2호
    • /
    • pp.5-17
    • /
    • 2019
  • 철도하중 및 지진하중 재하 시 궤도지지말뚝 구조의 동적 거동 평가를 위해 동적원심모형 실험을 수행하였다. 실험의 변수는 연약지반의 깊이와 성토체의 높이로 결정하였으며, 총 4가지 경우에 대해 실험을 수행하였다. 연약지반 깊이는 실제 연약지반층에 고속철도를 부설한 호남고속철도의 익산-정읍 구간의 시추주상도를 분석하여 결정하였으며, 성토체의 높이는 일반적인 고속철도의 성토체 높이 범위의 하한 값과 상한 값으로 결정하였다. 실험 결과, 연약지반 깊이 대비 성토체 높이 비율이 높을 수록 말뚝에 작용하는 최대 휨모멘트 값이 크게 평가되었다. 또한, 실험조건 내에서 부설되는 궤도지지말뚝 구조는 단주기 지진파에 대해서는 국내 내진설계 기준의 최대 지진하중인 0.22g에 대해서까지 안전한 것으로 확인되었다. 그러나, 장주기 지진파에 대해서는 재현주기 2400년 지진인 0.22g로 가진시 말뚝의 균열 모멘트가 초과되었다. 일련의 실험결과를 바탕으로, 본 논문에 기술된 연약지반 깊이와 성토체 높이 범위 내에서 궤도지지말뚝 일반 단면에 대한 연약지반 대비 성토체 높이 비율 기준을 제시하였다.

응답스펙트럼해석을 통한 경사말뚝이 설치된 잔교식 안벽의 내진성능 평가 (Evaluation of Seismic Performance of Pile-supported Wharves with Batter Piles through Response Spectrum Analysis)

  • 윤정원;한진태;김종관
    • 한국지반공학회논문집
    • /
    • 제37권12호
    • /
    • pp.57-71
    • /
    • 2021
  • 잔교식 구조물은 상판을 말뚝 또는 기둥으로 지지하는 형식의 항만 구조물로서, 경사 말뚝을 설치하여 지진하중과 같은 수평하중을 부분적으로 축력으로 분담하도록 설계할 수 있다. 기준서에서는 잔교식 구조물 내진설계 시 예비 설계 방법으로 응답스펙트럼해석법을 활용하도록 설명하고 있으며, 응답스펙트럼 해석 시 말뚝을 가상고정점 방법 및 지반스프링 방법을 적용하여 모델링하도록 제시하고 있다. 최근 응답스펙트럼해석 시 구조물의 동적 응답을 적절히 모사하는 모델링 방법을 도출하기 위해 연직 말뚝으로 구성된 잔교식 구조물에 관한 몇몇 연구들이 수행되어 왔으나, 현재까지 경사말뚝이 적용된 잔교식 구조물에 대한 응답스펙트럼해석 관련 연구는 부족한 실정이다. 그러므로 본 연구에서는 경사말뚝이 설치된 잔교식 구조물의 모델링 방법에 따른 내진성능을 평가하기 위해 동적원심모형실험과 더불어 응답스펙트럼 해석을 수행하였다. 실험 및 해석을 비교한 결과, 경사말뚝이 설치된 잔교식 구조물의 경우 실제 응답을 적절히 모사하기 위해 Terzaghi(1955)가 제시한 수평지반반력상수를 활용하여 모델링을 수행하는 것이 적절한 것으로 나타났다.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사 (2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure)

  • ;;김성렬
    • 한국지반공학회논문집
    • /
    • 제34권8호
    • /
    • pp.15-26
    • /
    • 2018
  • 최근, 성능기반 내진설계법이 도입되면서 동적수치해석을 수행하여 지진에 대한 구조물의 실제 거동을 엄밀히 평가하는 것이 필요해지고 있다. 성능기반설계를 수행하려면 수치해석 모델링의 적용성을 검증하는 것이 매우 중요하다. 그러므로, 본 연구에서는 2차원 수치해석을 수행하여 말뚝지지 구조물의 동적 거동을 분석하고 수치모델링 기법과 입력변수값 산정방법을 제안하였다. 수치모델링의 적용성은 느슨한 사질토 지반에 설치된 무리말뚝의 동적 원심모형실험 결과와 비교하여 검증하였다. 본 수치모델링은 동적 지반 물성값, 지반-말뚝 상호작용, 경계조건, 무리말뚝과 구조물의 모델링 등 원심모형실험의 실제 조건을 반영하도록 모델링하였다. 그 결과, 수치해석에서 얻어진 결과는 지반 내 가속도 변화, 말뚝의 모멘트와 변위, 그리고 구조물의 변위와 가속도 결과를 잘 모사하였다. 그러므로, 본 수치모델링 기법과 입력변수 산정기법이 무리말뚝의 내진성능을 평가할 때 유용하게 적용될 수 있을 것으로 판단된다.