• Title/Summary/Keyword: pile parameters

Search Result 216, Processing Time 0.029 seconds

The Use of Reliability-based Approach to Design Anchored Sheet Pile Walls (신뢰성에 근거한 앵커 널말뚝의 설계방안 연구)

  • Kim, Hyung-Bae;Lee, Seoung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2002
  • In this study, a reliability-based design (RBD) procedure for determining design values fur anchored sheet pile wall is proposed considering overturning about the anchor point as the major failure mode. In this design procedure, the depth of embedment of the sheet pile wall is logically chosen in accordance with degrees of uncertainties of design input parameters using approximate probabilistic computation methods. These methods have been successfully used in the geotechnical engineering requiring neither understandings of complex probabilistic theories nor efforts to prepare more data. It was investigated that the design results by the proposed method were compatible with those by commonly used deterministic design methods. Additionally, in an effort to investigate the effects of changes in the degree of uncertainties of major design variables on the design results of the sheet pile wall, a sensitivity analysis was peformed.

A Parametric Study for Estimating the Side Performance of Drilled Piers Socketed in Smeared Rock (스미어 현상이 발생한 암반에 근입된 현장타설말뚝의 주변부 거동예측을 위한 변수분석)

  • Kim, Hongtaek;Nam, Yelwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Just as infill material can reduce the shear strength of a rock joint, a layer of soft material between concrete and the surrounding rock socket can reduce pile shaft resistance of drilled shafts socketed in rocks. This can also result from construction methods that leave smeared or remoulded rock or drilling fluid residue on the sides of the rock sockets after concrete placement. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by construction practice. Characteristics of the concrete-rock interface, such as roughness and the presence of the soft materials deposited during or after construction can significantly affect the shaft resistance response of the pile. In this study, we conducted the parametric study to examine the performance characteristics of drilled shafts socketed in smeared rock under the vertical load with the code of finite difference method of FLAC 2D. As the results of the current research, the parameters that affect the settlement of the pile head and the ultimate unit shaft resistance could be identified.

  • PDF

Derivation of Flexural Rigidity Formula for Two-row Overlap Pile Wall (2열 겹침주열말뚝의 휨 강성 산정식 유도)

  • Choi, Wonhyuk;Kim, Bumjoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Two-row overlap pile wall, currently under development for use in deep excavations, is a novel retaining structure designed to perform itself as a cutoff wall as well as a high-stiffness wall by constructing four overlapping piles arranged in zigzag manner at a time using a tetra-axis auger. This wall has a relatively complex cross-section, compared with other types of pile wall, which would make it difficult to determine design parameters related to cross-section. In this study, a flexural rigidity equation has been derived by analyzing both theoretically and statistically various wall cross-sections with different pile diameters and overlap lengths. The flexural rigidity equation was found to show the maximum error rate of 3%.

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.

Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge (PSC 일체식 교대 교량의 거동특성 평가)

  • Ahn, Jin-Hee;Yoon, Ji-Hyun;Kim, Sang-Hyo;Kim, Jun-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.361-373
    • /
    • 2010
  • Bridges constructed without any expansion joint or bridge bearing are called integral abutment bridges. They integrate the substructure and the superstructure. Possible deformation of the superstructure, due to changes in temperature for example, is prevented by the bending of the piles placed at the lower part of the abutment. This study examines the behavior of integral abutment bridges through soil-pile interaction modeling method and proposes an appropriate modeling method. Also, it assesses the behavior characteristics of the superstructure and piles of integral abutment bridges through parametric study. Soil condition around the pile, abutment height, and pile length were selected as parameters to be analyzed. Structural analysis was conducted while considering the interactions of soil-pile and temperature change-earth pressure on the abutment. Comparative behavior analysis through soil-pile interaction modeling showed that elastic soil spring method is more appropriate in evaluating the behavior of integral abutment bridges. The parametric study showed the tendency that as the soil stiffness around the pile increases, the moment imposed on the superstructure increases, and the displacement of the piles decreases. In addition, it was observed that as the bridge height increases, the earth pressure on the abutment increases and that in turn affects the behavior of the superstructure and piles. Also, as the length of the pile increased, the integral bridge showed more flexible behavior.

Prediction of Driving Stresses in Piles (항타응력 추정)

  • 진병익;황정규
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-38
    • /
    • 1987
  • The prediction of driving stresses in piles is necessary for optimum selection of driving hammers, better design of precast piles, enact assessment of drivabilities and complete description of piling specifications. However, the existing pile-driving formulas based on the theory of Newtonian impact have some defects and shortcomings; the numerical method by the wave equation analysis using electronic computer usually Involves various uncertainties and limitations which can yield erroneous outcomes because it employs soil constants of which the nature is unknown as essential parameters and ignores the effect of residual stresses set up in the pile .after each hammer blow; and the electronic measuring technique needs extra time and expense. The method developed herein is presented for the purpose of giving field engineers a reliable and convenient analytical procedure for the prediction of driving stresses along the full length of pile using the most effetive parameters without resort to electronic computer. This method is based on the fundamental mechanics of stress waves in elastic rods and takes into account the effect of residual stresses induced by reversed friction in piles.

  • PDF

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Numerical Investigation on Piled Raft Foundation on Sandy Soils (사질토 지반에 시공된 말뚝전면기초의 수치해석연구)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.67-72
    • /
    • 2012
  • Finite element method was used to compare un-piled and piled raft foundation behaviors on sandy soils in this study. The soil parameters were estimated from SPT tests of 25 boreholes. Based on these soil parameters, a finite element analysis was conducted on un-piled and piled raft foundations. For the un-piled raft, the normalized settlement parameter for raft sizes of $8m{\times}8m$ and $15m{\times}15m$ ranged from 1.02~1.15 and 0.64~0.81, respectively. The raft thickness affects differential settlement and bending moments, but has little effect on load sharing or maximum settlement. Pile spacing greatly affected the maximum settlement, the differential settlement, the bending moment in the raft, and the load shared by the piles, while the differential settlement, the maximum bending moment and the load sharing are not affected very much by increasing the pile lengths.

The Local Scour around a Slender Pile in Combined Waves and Current (파랑과 흐름이 결합된 공존역에서 파일 주변의 국부세굴)

  • Park, Jong-Hwan;Kim, Kyoung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.405-414
    • /
    • 2010
  • In the study, experiments are performed in the mixing region combined wave and current to investigate the characteristics of local scour around a slender pile. Wave generator and current generator are used for the experiments and currents are co-directions with the waves. The local scour depths around the pipeline are obtained according to the various pipe diameters, wave periods, wave heights, and current velocities. The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter ($\theta$), Froude number (Fr), Keulegan-Carpenter number (KC), Ursell number ($U_R$), modified Ursell number ($U_{RP}$) and ratio of velocities ($U_c/U_c+U_m$) are analyzed. In the mixing region combined with waves and currents, The Froude number of single parameters is the main parameter to cause the local scour around a slender pile due to waves and current and this means that current governs the scour within any limits of the currents.