• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.023 seconds

A Study on the skin friction characteristics of SIP and the estimation of the nonlinear numerical modelling equation (SIP말뚝의 주면마찰특성 및 비선형 수치모델식 산정에 관한 연구)

  • 천병식;임해식;김도형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.153-160
    • /
    • 2003
  • While the interests on the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP(Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model with SM, SC soil were suggested.

  • PDF

A Study on the Head of PHC Repair Applying the Reinforcement of Bending the Rebar (절곡보강철근을 적용한 PHC말뚝의 머리보강에 관한 연구)

  • Hong, Suk-Hee;Park, Hong-Sick;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2450-2455
    • /
    • 2011
  • The importance for the department combined is increased concerning structures and pile foundation with the introduction of structures in sesmic design of structures. Therefore, the railway bridge and the road bridge standards approach for the earthquake about above the department combined by using strong coupling. Also, mechanical interpretation is performed as foundation combined with the head of pile foundation assuming the pillars. Accordingly, this study suggests the head of PHC repair can enhance the load carrying capacity and constructability of the department combined after bending, pulling, shear and compressive tests by appling the reinforcement of bending the rebar, the reinforcement of pulling the rebar.

  • PDF

Reinforcement of the Foundation using C,G.S (C.G.S공법에 의한 기초지반 보강)

  • 천병식;권형석;정의원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.441-448
    • /
    • 2000
  • While the Grouting has been used to reinforce the foundation of structures in wide range of application, there need complementary measures against problems such as pollution, durability, influence on the adjacent structures. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting, Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the S.P.T and core strength.

  • PDF

A Statistical Analysis on Dynamic Pile-Driving Formulas -For Evaluation of the New Formula- (말뚝의 동적(動的) 지지력(支持力) 공식(公式)의 통계적(統計的) 분석(分析) -새로운 공식(公式)의 평가(評價)를 위하여-)

  • Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1983
  • A new dynamic pile-driving formula derived by the writer, in which the mechanics of stress waves and the effect of residual stresses were considered for more accurate prediction of the load carrying capacity of piles, was compared with other representative formulas through statistical analysis using the load test results. As the result, the new formula was estimated as highly accurate and reliable, with its safety factor less than 3.

  • PDF

Behavior of Model Tension Piles in Sand (모래지반에서 모형인장말뚝의 거동)

  • 송영우
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.5-26
    • /
    • 1991
  • The results of a laboratory investigation for the influence of soil sties history, relative density of sand, pile surface condition depth and diameter on the behavior of piles in uplift are presented. Ultimate Uplife capacity depends not only on the relative density of sand but soil horizontal stress. The phenomena of critical depth can be explained by change of horizontal stress with depth. The value of Ktan tends to decreases with increasing pile diameter.

  • PDF

The Characteristics of Axial Bearing Capacity for the High Strength H-pile (고강도 H말뚝의 연직 지지력 특성)

  • 신방웅;여병철
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.135-143
    • /
    • 2000
  • 고강도 H말뚝은 다른 말뚝에 비해 관입성이 우수하며, 경제적으로 시공이 가능하여 도로공사 및 건축공사의 기초말뚝으로 광범위하게 전세계적으로 사용되어지고 있다. 따라서 본 논문에서는 고강도 H말뚝, 강관말뚝 및 PHC 말뚝에 정재하시험과 동재하시험을 실시하여 허용지지력을 비교 분석하였으며, 각각의 말뚝에 대한 동재하시험을 통해 시간경과효과를 평가하였다. 정재하시험과 동재하시험을 비교 분석한 결과 하중-침하곡선이 유사한 것으로 조사되었다. 또한 고강도 H말뚝, 강관 말뚝, PHC 말뚝이 지반내에 향타되었을 때의 허용지지력은 시간이 경과함에 따라 증가하는 것으로 평가되었다. 재하시험 결과 시간경과효과로 인해 지반의 허용지지력이 상승됨을 알 수 있어 앞으로 기초말뚝 설계시 참고자료로 활용할 수 있을 것으로 사료된다.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2))

  • Ryozo, Ooka;Hwang, Suk-Ho;Kentaro, Sekine;Yosuke, Shimawaki;Nam, Yu-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

A Reinforcement Effect of Pile Foundation by Compaction Grouting System in Railroad Station Building (Compaction Grouting System에 의한 철도역사건물 파일기초보강효과)

  • Chun, Byung-Sik;Choi, Seung-Kwon;Do, Jong-Nam;Sung, Hwa-Don
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1364-1368
    • /
    • 2006
  • By the countermeasure which is caused by with railroad station ground settlement it applied a CGS in each independent foundation. The effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Test result show that penetration resistance and the cone friction force increased a lot and settlement 13.475mm as the standard settlement 40.0mm appeared at below. Also uniaxial compression test result $278kg/cm^2$ as the standard $150kg/cm^2$ appeared far a lot.

  • PDF

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.