• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.023 seconds

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Quasi-static test of the precast-concrete pile foundation for railway bridge construction

  • Zhang, Xiyin;Chen, Xingchong;Wang, Yi;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • Precast concrete elements in accelerated bridge construction (ABC) extends from superstructure to substructure, precast pile foundation has proven a benefit for regions with fragile ecological environment and adverse geological condition. There is still a lack of knowledge of the seismic behavior and performance of the precast pile foundation. In this study, a 1/8 scaled model of precast pile foundation with elevated cap is fabricated for quasi-static test. The failure mechanism and responses of the precast pile-soil interaction system are analyzed. It is shown that damage occurs primarily in precast pile-soil interaction system and the bridge pier keeps elastic state because of its relatively large cross-section designed for railways. The vulnerable part of the precast pile with elevated cap is located at the embedded section, but no plastic hinge forms along the pile depth under cyclic loading. Hysteretic curves show no significant strength degradation but obvious stiffness degradation throughout the loading process. The energy dissipation capacity of the precast pile-soil interaction system is discussed by using index of the equivalent viscous damping ratio. It can be found that the energy dissipation capacity decreases with the increase of loading displacement due to the unyielding pile reinforcements and potential pile uplift. It is expected to promote the use of precast pile foundation in accelerated bridge construction (ABC) of railways designed in seismic regions.

A Study on the Mechanical Properties of HPC Pile Using Steel Fiber (강섬유를 혼입한 HPC Pile의 역학적 특성에 관한 연구)

  • 박승범;신동기;박병철;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.365-372
    • /
    • 1997
  • This study is aimed for manufacturing a High performance Concrete(HPC) Pile as using steel fibers, investigation the mechanical properties of HPC Pile and proposition the potential application. At this study. We found that mechanical properties(cracking moment and fracture moment) of Pretensioned spun High strength Concrete (PHC) Pile using steel fibers is much superior to without steel fibers. Therefore. we think that using steel fibers in Concrete Pile is to progress flexural strength energy absorption capacity and post-cracking resistance.

  • PDF

An Experimental Study of the Effect of Pile Cap on Behaviors of Group Piles (모형실험을 통한 사질토 지반에서의 무리말뚝 거동에 대한 상부기초 접촉 효과 연구)

  • 이수형;진봉근;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.259-266
    • /
    • 1999
  • In case that pile cap is in direct contact with underlying soil, the bearing mechanism for pile groups, including direct bearing effect of cap and its induced influence on pile-soil-cap interaction, should be properly considered. In this paper, the effects of pile caps on behaviors of pile groups in sandy soils were investigated by model tests, which consist of tests on 3 by 3 pile groups with/without contact on subsoil, single pile with/without contact and cap as a shallow foundation. Also, the influences of pile spacing in group piles on contact effects were investigated. The test results showed that the load carrying capacity of pile cap was large enough not to be ignored. However, the interaction effects due to contact between cap and subsoils were not revealed obviously in working load range. And in the design of pile groups, the bearing effect of pile cap when contacted with subsoils, can be reflected by simply summing up load settlement behaviors of each cap and group piles without contact.

  • PDF

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

A Study of Micro-piles Method combined with the Resisting Fixture interacting the power of frictional resistance in a contrary direction (양방향 저항체를 결합한 마이크로파일공법 연구)

  • Baik, Dong-Ho;Lee, Sang-Moo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.74-75
    • /
    • 2014
  • In remodeling business or construction of both new strucures and existing structures, Case that pile foundation was set is often. Micro pile, holding compressive force and tensile force by spherical friction, is supported by skin friction rather than end bearing capacity. but, This is weak in tension. Active area of micro pile's skin friction is narrow and micro pile don't do unification behavior hence. So bearing capacity was not fully mobilized in existing researching. In this study, in order to compensate for this method, micro pile to install Resisting Fixture is proposed.

  • PDF

Behavior Analysis of Noise & Vibration-Free Screw Concrete Piles by Means of Numerical Analysis (무소음・무진동을 위한 스크류콘크리트말뚝의 수치해석에 의한 거동분석)

  • Kim, Youngpil;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2010
  • In this study, a new noise & vibration-free screw concrete pile method that was expected environmentally friendly method was introduced, also the numerical analyses of a conventional PHC pile and a new screw concrete pile were done. As a result, the bearing capacity behavior and the settlement behavior of 2 kinds of concrete pile were analyzed and compared.

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction (부주면마찰력을 고려한 단말뚝의 허용지지력 공식 분석)

  • Lee, Sung-June;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.27-37
    • /
    • 2010
  • Downdrag force develops when a pile is driven through a soil layer which will settle more than a pile. There is no obvious criterion for application of the current pile design method considering the negative skin friction. Therefore, in this study, numerical analyses were performed to investigate the behavior of a single pile subjected to negative skin friction and their results were used to determine the applicability of the current design method. Including three different sites in Song-do area and two different cases with friction pile and end bearing pile conditions, total six cases were considered. The load-settlement relationships and the neutral points were estimated for different end bearing conditions and the allowable bearing capacity of piles with negative skin friction was investigated through parametric studies. Based on the results showed that the negative skin friction made a major influence on the settlement of a pile and its stress. However the allowable bearing capacity may not be influenced by the negative skin friction. Compared with the allowable bearing capacity obtained from the ultimate bearing capacity with the safety factor of 3, the current design method with the safety factor of 3 underestimated the allowable bearing capacities regardless of the end bearing conditions. On the other hand, the current design method with the safety factor of 2 yielded reasonable results depending on the end bearing conditions.