• Title/Summary/Keyword: piezoresistive pressure sensor

Search Result 69, Processing Time 0.027 seconds

Surface Flatness Improvement in Si Anisotropy Etching Process Utilizing Ultrasonic Wave Technology (초음파 기술을 이용한 실리콘 이방성 식각 공정에서의 표면 평탄화 향상 연구)

  • Yun, Eui-Jung;Kim, Jwa-Yeon;Lee, Kang-Won;Lee, Seok-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.416-417
    • /
    • 2005
  • In this study, we optimized the process of Si anisotropy etching by combing tetramethyl ammonium hydroxide (TMAH) etching process with ultrasonic wave technology. New ultrasonic TMAH etching apparatus was developed and it was used for fabricating a $20{\mu}m$ thick diaphragm for Si piezoresistive pressure sensors. Based on comparison study on etch rate and surface flatness, it was observed that the Si anisotropy etching methode with new ultrasonic TMAH etching apparatus (at 40 kHz/ 500 watt) was superior to conventional etching methods with TMAH or TMAH+ammonium persulfate(AP) solutions.

  • PDF

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

Clinical Study on the Sasang Constitutional Pulse Using Array Piezoresistive Sensor (어레이 압저항 센서를 활용한 체질맥 임상연구)

  • Lee, Si-Woo;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.1
    • /
    • pp.118-131
    • /
    • 2006
  • 1. Objective Pulse diagnosis is generally applied to Traditional Oriental Medicine but not to Sasang Constitution diagnosis. Recently new pulse analyzer using array piezoresistive sensor and multi-channel robot arm developed. It reflects Oriental Medical Doctors' diagnostic processes, and its reproducibility test was done at Korea Institute of Oriental Medicine. We performed this study to set parameters diagnosing Sasang Constitution. 2. Methods One hundred thirty three subjects participated in this study. They are healty and approved this study. Before being tested with pulse analyzer, they had interview with Sasang Constitution Specialist to diagnose their Sasang Constitution. We established some useful parameters from parameters of pulse analyzer according to the Original Texts of Oriental Medicine and clinical experiences to analyze with clinical data of this study. 3. Results (I) There is a significant difference in pre-dicrotic notch time among all parameters of pulse analyzer in Sasang Constitution groups(P=0.047). (2) There is a significant difference in maximum pulse pressure in 33 to 48 year Sasang Constitution groups(P=0.010). (3) There is a significant difference in frequency width in 17 to 32 year Sasang Constitution groups(P=0.002). (4) There is a significant difference in CFS value in groups which OMD diagnoses; Floating & Sinking pulse(P=0.020). (5) There is a significant difference in pulse rate in groups which OMD diagnoses; Rapid & Slow pulse(P=0.000). (6) There is a significant difference in maximum pulse pressure in groups which OMD diagnoses; Deficient & Solid pulse(P=0.000). 4. Conclusions Analyzing parameters in each Sasang Constitution group, we found it shows significant difference in maximum pulse pressure and corresponding tendency in coefficient of floating & sinking pulse with theories of Sasang Consti-tutional Medicine. As we accumulate more clinical data, we will establish algorithm to diagnose Sasang Constitution using a pulse analyzer.

  • PDF

Clinical Study on the Floating and Sinking Pulse Detection with Piezoresistive Sensors and Contact Pressure Control Robot (압저항 센서와 가압조절 로봇을 이용한 부침맥 검출에 관한 임상연구)

  • Lee Si-Woo;Lee Yu-Jung;Lee Hae-Jung;Kang Hee-Jung;Kim Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1673-1675
    • /
    • 2005
  • The pulse diagnosis is an important and universal method in Oriental medicine. Nevertheless, because of characteristic that depends on subjective sense of Oriental medicine doctor (OMD), it is not recognized by objective basis. The Korean Institute of Oriental Medicine(KIOM) and Daeyo Medi. Co. Ltd. developed the 3-D Mac using arrey piezoresistive sensors and multi-axial robot. 133 healthy subjects participated in this study, 75 males and 58 females, between 20 and 70 years of age. All subjects were relaxed in a supine position on a comfortable chair for twenty minutes before the measurement was taken. The measured position is the radial artery of subject's left wrist and the position is called Chon, Kwan and Chuck in Oriental medicine. To detect floating and sinking pulse, we established coefficient of floating and sinking(CFS). CFS means relative position of maximum pulse pressure in PH curve. The lower CFS value means that the pulse has floating tendency. There was significant diffence between CFS and diagnosis of floating-sinking pulse by OMD(p=0.020). CFS value of over 40's group was significantly larger than those of 20's and 30's(p=0.000). There was no significant difference between male and female(p=0.061).

The effect of the boss and mass on the sensitivity of the piezoresistive sensor (압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향)

  • Shim, Jae-Joon;Lee, Sung-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.405-410
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the distribution of the resistance change ratio on the diaphragm and bridge surface where piezoresistor would be formed, and proposed the proper size and position of piezoresistor with which the sensitivity of sensor was increased. As the width of mass and boss was increased, the distance between piezoresistors was closed and the maximum value of resistance change ratio was decreased by the increase of the structure stiffness.

  • PDF

Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect (턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석)

  • 김옥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

Applications of Polycrystalline Silicon Layer to Sensors (다결정실리콘 박막의 센서에의 응용)

  • Park, Sung-June;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1226-1228
    • /
    • 1994
  • Applications of poly-Si layers which are important as sensing and structural material of various sensors were reviewed in this research. A piezoresistive pressure sensor with piezoresistors has sensitivity of $6.93{\mu}$ V/(VmmHg) within 300mmHg. Temperature sensor was studied with measurement range of $-40{\sim}140^{\circ}C$ and $400{\sim}800^{\circ}C$ using boron-doped and undoped poly-Si resistors, respectively. Poly-Si layer was used to transduce volume change of polyimide to stress of silicon diaphragm for humidity sensor.

  • PDF

Fabrication and Characteristics of FET-type Pressure Sensor Using Piezoelectric PZT Thin Film (압전체 PZT 박막을 이용한 FET형 압력 센서의 제작과 그 특성)

  • Kim, Young-Jin;Lee, Young-Chul;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-179
    • /
    • 2001
  • The currently used semiconductor pressure sensors are piezoresistive and capacitive type. Especially, semiconductor micro pressure sensors have a great deal of attention because of their small size. However, its fabrication processes are difficult, so that its yield is poor. For the purpose of resolving the drawbacks of the existing silicon pressure sensors, we demonstrate a new type of pressure sensor using PSFET(pressure sensitive field effect transistor) and investigate its operational characteristics. We used PZT(Pb(Zr,Ti)$O_3$) as a pressure sensing material. PZT thin films were deposited on a gate oxide of MOSFET by an rf-magnetron sputtering method. To abtain the stable phase, perovskite structure, furnace annealing technique have been employed in PbO ambient. The sensitivity of the PSFET was 0.38 mV/mmHg.

  • PDF

Fabrication and Characterization of Miniature Si Pressure Sensor (소형 Si 압력센서의 제작 및 특성 평가)

  • Ju, Byeong-Kwon;Lee, Myoung-Bok;Lee, Jung-Il;Kim, Hyoung-Gon;Kim, Kwang-Nham;Oh, Myung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.62-68
    • /
    • 1990
  • On the basis of standard Si processing, the miniaturized piezoresistive-type Si pressure sensor with a chip size of $1.7{\times}1.7{mm^2}$ was fabricated and its operating characteristics were investigated. The sensor chip has a full-bridge type of 4 boron-diffused resistors which is formed on an $1.0{\times}1.0{mm^2}$ area, $20{\mu}m$ thick n-type Si diaphragm and finally, encapsulated under room temperature, 1 atm in order to measure a gauge pressure. The operating characteristics of this sensor were determined as a pressure sensitivity of $14.2{\mu}$V/VmmHg, a rated pressure range of 0~760 mmHg, and a maximum nonlinearity of $1.0{\%}$ FS at room temperature.

  • PDF