• 제목/요약/키워드: piezoresistive cantilever

검색결과 20건 처리시간 0.022초

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

고감도 압저항 외팔보 센서를 이용한 Liposome의 검침 (Rapid detection of liposome by piezoresistive cantilever sensor)

  • 현석정;김현석;김용준;정효일
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.156-159
    • /
    • 2005
  • Liposomes are microscopic spherical vesicles that form when lipids are hydrated and have been widely used for biochemical assay, drug delivery and molecular imaging. In particular, they are well known for artificial cell membranes to study cellular functions such as cell fusions and membrane proteins. Here, we firstly report the detection of liposomes by the highly sensitive microfabricated piezoresistive cantilever sensor chip and the phosphatidylserine recognition protein C2A which is chemically immobilized on the sensor surface. The signal created from the bending motion of piezoresistive cantilever after the liposome attachment has been monitored in real time.

표면 미세 가공 기술로 제작된 Piezoresistive Microcantilever를 이용한 바이오 센서의 제작 및 특성 (Fabrication of Piezoresistive Microcantilever using Surface Micromachining Technique for Biosensors)

  • 나광호;강치중;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2134-2136
    • /
    • 2004
  • A microcantilever-based biosensor with piezoresistor has been fabricated using surface micromachining technique, which is cost effective and simplifies a fabrication procedure. To evaluate the characteristics of the cantilever, the cystamine terminated with thiol was covalently immobilized on the gold-coated side of the cantilever and glutaraldehyde that would be bonded with amine group in the cystamine was injected subsequently. This process was characterized by measuring the deflection of the cantilever in real time monitoring. Using a piezoresistive read-out and a well-known optical beam deflection method as well carried out the measurement of deflection.

  • PDF

Development of High-Sensitivity Cantilever-Detected ESR Measurement Using a Fiber-Optic Interferometer

  • Tokuda, Yuki;Tsubokura, Daichi;Ohmichi, Eiji;Ohta, Hitoshi
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.173-177
    • /
    • 2013
  • Cantilever-detected high-frequency electron spin resonance (ESR) is a powerful method of sub-terahertz and terahertz ESR spectroscopy for a tiny magnetic sample at low temperature. In this technique, a small magnetization change associated with ESR transition is detected as deflection of a sample-mounted cantilever. So far, we have succeeded in ESR detection at 370 GHz using a commercial piezoresistive microcantilever. The spin sensitivity was estimated to ${\sim}10^{12}$ spins/gauss. In order to further increase the sensitivity, we adopt a fiber-optic-based detection system using a Fabry-Perot interferometer in place of piezoresistive system. Fabry-Perot cavity is formed between an optical-fiber end and microcantilever surface, and a change in the interference signal, corresponding to the cantilever deflection, is sensitively detected. This system is suitable for low-temperature and high-magnetic-field experiments because of its compact setup and less heat dissipation. In this study, performance of Fabry-Perot interferometer is evaluated, and its application to cantilever-detected ESR measurement is described.

3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구 (A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing)

  • 김성용;강인필
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.187-192
    • /
    • 2017
  • 본 논문에서는 탄소나노튜브 전왜성 복합소재(Nano-Carbon Piezoresistive Composite, NCPC)를 기반으로 하며, 3D 프린팅 공정을 활용하여 제작된 압력센서의 개발 진행 연구를 소개하였다. 압력센서의 성능을 향상시키기 위하여 센서전극을 외팔보 형태로 설계하였고 3D 프린팅 공정을 활용하여 소형전극을 제작하였다. 압력을 전기적 저항의 변화로 바꾸는 전왜성 센서의 전극은 2wt%의 다중벽 탄소나노튜브/에폭시 전왜성 복합소재로 제작하였다. 센서는 압력시스템에 용이하게 적용하기 위하여 파이프 플러그 캡에 삽입하여 제작을 하였으며, 실험실 환경에서 압력교정기를 활용하여 실험을 하였다. 외팔보 전극의 압력센서는 16,500kPa까지 선형적인 출력전압 특성을 보였으며, 이는 벌크형 전극의 압력센서 대비 약 200% 압력측정 성능 향상을 보였다.

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구 (The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor)

  • 심재준;한근조;한동섭;이성욱;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

화학적 성분 분석능력을 가진 원자 현미경의 제작 (A micromachined cantilever for chemically sensitive scanning force microscope applications)

  • 이동원
    • 센서학회지
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper describes a novel concept of a chemically sensitive scanning force microscope (CS-SFM). It consists of the conventional SFM and the time-of-flight mass spectrometer (TOF-MS). A switchable cantilever (SC) fabricated by the micromachining technology combines each advantage of two completely different systems, SFM and TOF-MS. The CS-SFM offers to produce both images of topography and chemical information simultaneously. First we employed a rotatable tip holder based on 4 piezotube actuators for demonstration of the possibility of the CS-SFM concept. Second the CS-SFM concept is optimized with the micromachining technology. The micromachined SC with an integrated bimorph actuator and a piezoresistive strain sensor provides a reasonable switching speed of ${\sim}10$ ms which is very attractive for the CS-SFM application. The SC is currently being integrated in an ultra-high-vacuum system to perform various experiments.

흑연과 CNT 복합체를 압저항체로 하는 PDMS 기반의 바람저항형 유속센서 개발 (Development of PDMS-based Drag Force-type Flowmeter with Graphite-CNT Composite as Piezoresistive Material)

  • 박상준;신민기;김노연;이상훈
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.44-50
    • /
    • 2023
  • In this study, a polydimethylsiloxane (PDMS)-based drag force-type flowmeter was fabricated using a graphite-carbon nanotube (CNT) composite as a piezoresistive material and evaluated. The device was in the form of a cantilever, which was composed of the soft material, PDMS, and fabricated using a mold manufactured by a three-dimensional printer. The cost-effective graphite was mixed with CNTs to serve as a piezoresistive material. The optimal mixing ratio was investigated, and the piezoresistive material formed using a graphite:PDMS:CNT ratio of 1.5:1:0.01 was adopted, which showed a stable output and a high sensitivity. Various forward and backward air flows in the range of 0-10 m/s were measured using the fabricated flowmeter, and both tensile and compression characteristics were evaluated. The measured results showed a stable output, with the resistance change gradually increasing with the air flow rate. Repeatability characteristics were also tested at a repeated air flow of 10 m/s, and the flowmeter responded to the applied air flow well. Consequently, the fabricated device has a high sensitivity and can be used as a flowmeter.

실리콘 에피층을 이용한 자동차 에어백용 가속도계 (Airbag Accelerometers Using Silicon Epitaxial Layers)

  • 고종수;김규현;이창렬;조영호;이귀로;곽병만
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.9-15
    • /
    • 1996
  • A silicon microaccelerometer is designed and fabricated using silicon epitaxial layers for automotive electronic airbag applications. A cantilever structure is chosen for high sensitivity and piezoresistive detection method is adopted for circuit simplicity and low cost. An optimum design is used to find optimum microstructure sizes for maximum sensitivity subject to performance requirements and design constraints on natural frequency, damping ratio, maximum allowable stress and microfabrication limitations. The microaccelerometer is fabricated by micromachining processing steps, composed of material-selective and orientation-dependent chemical etching techniques. Fabricated prototype shows a sensitivity of 88.6$\mu\textrm{V}$/g within a resonant frequency of 1.75KHz. Estimated performance of the microaccelerometer is compared with measured one. Discrepancy between the theoretical values and the experimental values is discussed together with possible sources of the errors.

  • PDF