• Title/Summary/Keyword: piezomagnetic coefficient

Search Result 7, Processing Time 0.017 seconds

Effect of Permeability and Piezomagnetic Coefficient on Magnetostrictive/Piezoelectric Laminate Composite

  • Wu, Zhiyi;Wen, Yumei;Li, Ping;Yang, Jin;Dai, Xianzhi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • The magnetostrictive material is magnetized in magnetic field and produces a nonuniform demagnetizing field inside and outside it. The demagnetization is decided by the permeability of magnetostrictive material and its size. The magnetoelectric performances are determined by the synthesis of the applied and demagnetizing fields. An analytical model is proposed to predict the magnetoelectric voltage coefficient (MEVC) of magnetostrictive/piezoelectric laminate composite using equivalent circuit method, in which the nonuniform demagnetizing field is taken into account. The theoretical and experimental results indicate that the MEVC is positively connected with the permeability and the piezomagnetic coefficient of magnetostrictive material. To obtain the maximum MEVC, both the permeability and the piezomagnetic coefficient of magnetostrictive material should be taken into account in selecting the suitable magnetostrictive material.

Enhanced Giant Magnetoelectric Effect in Laminate Composites of FeCuNbSiB/FeNi/PZT

  • Wen, Yumei;Wang, Dong;Li, Ping
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • A novel laminate composite of FeCuNbSiB/FeNi /PZT is proposed, where FeCuNbSiB has a permeability of around 100000, which is much larger than that of FeNi. The high-permeability FeCuNbSiB was laminated with piezomagnetic FeNi rather than attached to its ends. It is expected that the effect produced by the high permeability will act on the whole of the piezomagnetic layer. While a FeNi layer was laminated with a FeCuNbSiB layer, the strong demagnetization produced by the latter was expected to be imposed on the FeNi layer as well as the applied fields. The distribution of applied fields was altered by the high-permeability material (both bias and ac field) and the field variation positively contributed to the ME effect in piezomagnetic/piezoelectric composites. Thus the ME voltage coefficient along with the field sensitivity were improved.

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.

Effective Properties of Multi-layered Multi-functional Composites

  • Kim, Byeong-Chan;Baltazar, Arturo;Kim, Jin-Yeon
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.153-166
    • /
    • 2009
  • A matrix method for evaluating effective electro-magneto-thermo-elastic properties of a generally anisotropic multilayered composite is presented. Physical variables are categorized into two groups: one that satisfies the continuity across the interface between layers and another that satisfies an average inter-layer compatibility (which is also exact). The coupled electro-magneto-thermo-elastic constitutive equation is accordingly reassembled into submatrices, which leads to the derivation of concise and exact matrix expressions for effective properties of a multilayered composite having the coupled physical effects. Comparing the results for a purely elastic multiplayer with those from other theoretical approaches validates the developed method. Examples are given for a PZT-graphite/epoxy composite and a $BaTiO_3-CoFe_2O_4$ multiplayer which exhibit piezo-thermoelastic and magnetoelectric properties, respectively. The result shows how a strong magnetoelectric effect can be achieved by combining piezoelectric and piezomagnetic materials in a multilayered structure. The magnetoelectric coefficient of the $BaTiO_3-CoFe_2O_4$ multiplayer is compared with those for fibrous and particulate composites fabricated with the same constituents.