• 제목/요약/키워드: piezoelectric strain

검색결과 284건 처리시간 0.028초

압전세라믹 기판과 고자왜박막을 결합한 스마트액츄에이타 (Smart Actuators Composed of Piezoelectric Ceramics and Highly Magnetostrictive films)

  • 신광호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권5호
    • /
    • pp.289-293
    • /
    • 2000
  • This paper presents a study on the linear compensation of nonlinear hysteric actuators using the highly magnetostrictive film pattern as a strain sensor. Elements had a hybrid structure, in which thin soft glass substrate with the highly magnetostrictive amorphous FeCoSiB film was bonded on the PZT piezoelectric substrate. The magnetostrictive film as a strain sensor detects the deflection of an actuator, and a voltage signal from the strain sensor related to the deflection of an actuator is used for the linear control of an actuator.

  • PDF

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

비스무스계 무연 압전세라믹스의 저전계 변형특성 향상을 위한 세라믹/세라믹 복합소재 기술 (A Brief Review of Enhancing Incipient Piezostrains: Approach by Ceramic/Ceramic Composites)

  • 한형수;즈엉 짱 안;안창원;조욱;이재신
    • 세라미스트
    • /
    • 제23권1호
    • /
    • pp.89-100
    • /
    • 2020
  • Abnormally large electromechanical strain properties have been reported in bismuth-based piezoelectric ceramics, which cast a promise for replacing the market-dominating PZT-based piezoelectric ceramics in actuator applications. In spite of these large strains in bismuth-based piezoelectric ceramics, there still remains a critical issue for its safe transfer to practical applications, representatively, a relatively high operating field required to obtain the large strain properties. To overcome the challenge, much attention has been paid to so-called 0-3(or 3-0) type ceramic/ceramic composite approach to better tailoring the strain properties of bismuth-based piezoelectric ceramics. The approach turns out to be highly effective, leading to a drastic decrease in the operating electric field for these materials. Besides, both extensive and intensive search for the related mechanism revealed that the reduction in the operating electric field is largely due to the contribution from polarization coupling or strain coupling model between two different ceramics. This article reviews the status of the art in the development of novel ceramic/ceramic composites to make large incipient piezostrains in bismuth-based lead-free piezoelectric ceramics practical.

비스무스계 무연 압전 세라믹스의 상전이 거동 및 전기 기계적 변형 특성에 대한 La2O3 도핑 효과 연구 (Effects of La2O3 Doping on Phase Transition Behavior and Electromechanical Strain Properties in Bismuth-Based Lead-Free Piezoelectric Ceramics)

  • 강은서;형성재;강유빈;박민성;즈엉 짱 안;이재신;한형수
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.457-463
    • /
    • 2024
  • (Bi1/2Na1/2)TiO3(BNT) piezoelectric ceramics are one of the promising materials that can replace Pb(Zr, Ti)O3(PZT) piezoelectric ceramics due to the high electromechanical strain properties. However, it is still difficult to use practical applications because the required electric field for inducing electromechanical strain is relatively higher than that of PZT ceramics. To overcome this problem, it has been intensively studied on doping impurity or modifying other ABO3 for BNT-based piezoelectric ceramics. Therefore, this study investigated the effects of La2O3 doping on the phase transition behavior and electromechanical strain properties in BNT-SrTiO3 (BNT-ST) lead-free piezoelectric ceramics. In the case of the temperature-dependent dielectric properties, it was confirmed that a phase transition from ferroelectrics to relaxors is induced with increasing La2O3 content. As a result, the electromechanical strain properties of BNT-ST ceramics were improved. The highest Smax/Emax value corresponding to 300 pm/V was obtained at 2 mol% La2O3-dopped BNT-ST ceramics. Accordingly, this study successfully demonstrated that La2O3 doping is effective on the inducing phase transition from ferroelectrics to relaxors and the improving electromechanical strain properties of BNT-ST lead-free piezoelectric ceramics.

보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교 (Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types)

  • ;홍동수;김정태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

PMN-PZ-PT 세라믹스를 이용한 적층형 액츄에이터의 변위특성 (Electric-Field-Induced Strain Properties of Multi Layer Ceramic Actuator Using PMN-PZ-PT Ceramics)

  • 하문수;정순종;고중혁;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.620-623
    • /
    • 2003
  • Non-linear behaviors of multilayer piezoelectric ceramic actuator (MCA) were investigated under electrical and mechanical stress. DC 100 V bias was applied to the MCA to obtain displacement. Laser vibrometer, which using Doppler effect, was employed to characterize displacement caused by $d_{33}$ mode of MCA. To understand this non-linear behavior of MCA, displacement was measured and compared under different load states. By increasing load, electric field-induced strain and piezoelectric constant($d_{33}$) of MCA was decreased. We attribute this phenomenon to the domain wall motion and depoling of MCA under heavy load.

  • PDF

Ba 치환된 PMN-PT-PZ계 세라믹스의 압전 및 변위특성 (A Study on Piezoelectric and Strain Properties Using PMN-PT-PZ Ceramics with Ba Substitution)

  • 지승한;이능헌;박광현;박종국;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1113-1115
    • /
    • 1993
  • Piezoelectric Actuator samples were fabricated using PMN-PT-PZ ceramics with Barium substitution, and the strain properties of them were investigated. The tartest Piezoelectric coefficient and electromechanical coupling coefficient were observed at the sintering temperature $1250^{\circ}C$, Barium 5mol%. In the case of Multilayered specimens, they showed considerable strain and small hysteresis than single round type.

  • PDF

자기계측 기능을 이용한 압전 빔의 잔류진동 제어 (Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology)

  • 남윤수;장후영;박종수
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.