• 제목/요약/키워드: piezoelectric energy harvesting

검색결과 237건 처리시간 0.031초

Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석 (System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method)

  • 윤헌준;윤병동;김흥수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계 (Design of a Vibration Energy Harvesting Circuit With MPPT Control)

  • 박준호;윤은정;박종태;유종근
    • 한국정보통신학회논문지
    • /
    • 제15권11호
    • /
    • pp.2457-2464
    • /
    • 2011
  • 본 논문에서는 압전 소자를 이용한 진동에너지 하베스팅 회로를 설계하였다. 압전소자의 전력-전압 특성을 이용하여 최대 전력을 부하로 전달하기 위한 MPPT(Maximum Power Point Tracking) 제어 기능을 구현하였다. MPPT 제어 회로는 압전소자의 출력 단에 연결된 전파 정류회로의 개방회로 전압을 주기적으로 샘플링하여 최대 가용전력이 생성되는 지점을 추적하고 이를 부하로 전달하는 역할을 한다. 제안된 진동에너지 하베스팅 회로는 $0.18{\mu}m$ CMOS 공정으로 설계하였다. 모의실험 결과 설계된 회로의 최대 전력 효율은 91%이고, pad를 제외한 칩 면적은 $700{\mu}m{\times}730{\mu}m$이다.

Sustainable Vibration Energy Harvesting Based on Zr-Doped PMN-PT Piezoelectric Single Crystal Cantilevers

  • Moon, Seung-Eon;Lee, Sung-Q;Lee, Sang-Kyun;Lee, Young-Gi;Yang, Yil-Suk;Park, Kang-Ho;Kim, Jong-Dae
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.688-694
    • /
    • 2009
  • In this paper, we present the results of a preliminary study on the piezoelectric energy harvesting performance of a Zr-doped $PbMg_{1/3}Nb_{2/3}O_3-PbTiO_3$ (PMN-PZT) single crystal beam. A novel piezoelectric beam cantilever structure is used to demonstrate the feasibility of generating AC voltage during a state of vibration. The energy-harvesting capability of a PMN-PZT beam is calculated and tested. The frequency response of the cantilever device shows that the first mode resonance frequency of the excitation model exists in the neighborhood of several hundreds of hertz, which is similar to the calculated value. These tests show that several significantly open AC voltages and sub-mW power are achieved. To test the possibility of a small scale power source for a ubiquitous sensor network service, energy conversion and the testing of storage experiment are also carried out.

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

도시·주택 적용 에너지수확 블록구조의 진동 특성 및 발전성능 평가 (Evaluation on the Performance of Power Generation and Vibration Characteristics of Energy Harvesting Block Structures for Urban & Housing Application)

  • 노명현;이상열
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3735-3740
    • /
    • 2012
  • 본 연구는 다양한 에너지 하비스팅 기술들 중 압전 기술과 전자기 유도 방식을 조합한 에너지 블록 구조를 개발하고 발전성능 평가를 수행한다. 본 연구의 목적은 개발된 에너지 하비스팅 블록의 주택 도시 분야 적용성을 평가하기 위한 것이다. 본 연구는 동적 특성을 분석하기 위하여 유한요소 해석을 실시하고, 실험실 규모의 다층 에너지 하비스터의 현 발전수준을 평가하여 제시하였다. 그 다음으로 증폭기술이 적용된 프로토타입의 특징을 설명하고 개발된 프로토 타입 모듈의 발전성능을 다각적으로 평가하여 제시하였다.

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca;Bilgen, Onur
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.615-624
    • /
    • 2017
  • This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.

압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구 (A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles)

  • 현동열;박귀일
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.