• Title/Summary/Keyword: piezoelectric element

Search Result 618, Processing Time 0.039 seconds

New Milliactuator Embedded Suspension (밀리엑츄에이터가 내재된 신규 서스펜션)

  • Yoon, Joon-Hyun;Hong, Eo-Jin;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • To realize higher track density of HDD, the servo bandwidth should be higher, however, is limited by the mechanical resonances of the arm, coil of the VCM and ball bearing pivot. The dual-stage actuator systems have been suggested as a possible solution. For the dual-stage actuator systems based on the suspension, the suspension resonance frequencies in the radial access direction are important factors to increase a servo bandwidth, however the improvement of these frequencies may affect the shock resistance performance and spring constant. The slider's flying stability can be deteriorated by the change of a vertical stiffness. In this work, we have investigated a suspension design scheme possessing a milliactuator for dual-stage actuator systems and also achieved higher mechanical characteristics. Design parameters are deduced by finite element analysis with sensitivity function. It is confirmed that the proposed suspension with the milliactuator has the capability of fine tracking motion, due to its hinge structure on the spring region, and achieves higher mechanical resonance frequencies in the radial access direction with a high-shock resistance and a low-spring constant.

  • PDF

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(1) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 1)

  • 이진열;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.56-66
    • /
    • 1995
  • Recently, with theraped advancement in th oceanology such an ocean-going vessel and oceanic structures, there is a need to study the cavitation erosion-corrosion control of pump impeller, the partial element of ocean machinery, for more effective operation. Especially, the cathodic protection (impressed current method & Al-sacrificial anode method) was applied to sea water, and Cu-alloy material mixed Zn & Al was used as a control method of cavitation erosion-corrosion. In this study, used the piezoelectric vibrator with 20KHz, 24.mu.m to cavity generation apparatus, and investigated the weight loss, weight loss rate, electrode potential & current density etc. under this condition. According to test result, thos describes how to indentify an influence of the cathodic protection and Al & Zn addition in material development for the control of cavitation erosion-corrosion, and those will serve as fundamental data on the cavitation erosion-corrosion control of oceanic centrifugal pump.

  • PDF

development of Ultrasonic waterdrop Repellers for Glass Plates (유리판용 초음파 물기 제거기 개발)

  • Jung, Yi-Bong;Lee, Young-Jin;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.12-17
    • /
    • 1997
  • In this work, we developed a new type ultrasonic dehumidifier with piezoelectric ceramics, which and efficiently repel waterdrops on outdoor glass plates exposed to raindrops. Through finite element analysis of a certain type of glass plates to analyze its dynamic behavior, the structure of the ultrasonic device we determined to get the optimal performance. A supplemental metal plate was attached to the glass plate for uniform cleaning. Based on the theoretical results, experimental samples were fabricated and evaluated with various dimensions of the glass plate and the piezoceramic vibrator. Driving circuit for the dehumidifier made use of the frequency sweeping technique to keep track of the resonant frequency of the glass plate that was variant with environmental conditions.

  • PDF

System identification of a building structure using wireless MEMS and PZT sensors

  • Kim, Hongjin;Kim, Whajung;Kim, Boung-Yong;Hwang, Jae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.191-209
    • /
    • 2008
  • A structural monitoring system based on cheap and wireless monitoring system is investigated in this paper. Due to low-cost and low power consumption, micro-electro-mechanical system (MEMS) is suitable for wireless monitoring and the use of MEMS and wireless communication can reduce system cost and simplify the installation for structural health monitoring. For system identification using wireless MEMS, a finite element (FE) model updating method through correlation with the initial analytical model of the structure to the measured one is used. The system identification using wireless MEMS is evaluated experimentally using a three storey frame model. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS estimates system parameters with reasonable accuracy. Another smart sensor considered in this paper for structural health monitoring is Lead Zirconate Titanate (PZT) which is a type of piezoelectric material. PZT patches have been applied for the health monitoring of structures owing to their simultaneous sensing/actuating capability. In this paper, the system identification for building structures by using PZT patches functioning as sensor only is presented. The FE model updating method is applied with the experimental data obtained using PZT patches, and the results are compared to ones obtained using wireless MEMS system. Results indicate that sensing by PZT patches yields reliable system identification results even though limited information is available.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Ultrasonic Fatigue Test for a High Strength Steel Plate (고장력 강판의 초음파 피로시험)

  • Yeom, Hyunho;Jung, Yongchan;Kim, Chayeong;Kang, Ki-Young;Lee, Moon Gu;Hong, Min-Sung;Jeon, Yongho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.589-593
    • /
    • 2015
  • The demand of high cycle fatigue behavior on plate material is increasing because of its various applications. However, the high-cycle fatigue life data of the plate material is very rare compared to the rod material. Thus, in this study, a plate specimen is designed for the ultrasonic fatigue test because it is time efficient as compared to the conventional fatigue test. To apply the ultrasonic fatigue test, the specimen design is required to resonate at 20 kHz. Therefore, the dynamic elastic modulus was determined by measuring the resonance frequency with a piezoelectric element and laser doppler vibrometer (LDV). As a result, the plate specimen is designed and demonstrated using the ultrasonic fatigue testing machine. The ultrasonic fatigue test results were compared with the hydraulic fatigue test results.

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Development of a Tree-shaped Wind Power System Using Piezo-electric Materials (압전 재료를 이용한 나무형 풍력 발전 시스템 개발)

  • Oh, Seung-Jin;Han, Hyun-Joo;Han, Soo-Bin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • This paper reports an experimental investigation to design a tree-shaped wind power system using piezo-electric materials. The proposed system is to produce power if wind is strong enough to produce any bending motions in the energy converting elements, i.e., piezo-electric materials. Two different kinds of piezoelectric materials are used in the present study to produce power by scavenging energy from the wind. The soft flexible one made the leaf element while the hard one was applied to the trunk portion of the tree requiring rather strong winds to generate any power. Although small, each leaf deems to play the role of a power producer and currents are continuously trickling down to the storage battery installed at the bottom of the system.