• 제목/요약/키워드: piezoelectric effects

검색결과 379건 처리시간 0.024초

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

CIM 기술로 제조한 1-3 형 압전복합체의 물성 평가 (Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with CIM Technology)

  • 임종인;신호용;김종호;임수진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.196-199
    • /
    • 2012
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol. % of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol. % of the PZT ceramics increased up to 30 vol. % and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

  • PDF

세라믹 사출성형기술로 제조한 1-3형 압전복합체의 물성 평가 (Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with Ceramic Injection Molding Technology)

  • 신호용;김종호;임수진;임종인
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.648-653
    • /
    • 2011
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol% of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol% of the PZT ceramics increased up to 30 vol% and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

PZT 세라믹스의 전기기계결합계수 온도 안정성에 관한 연구 (Temperature Stability of Electro-mechanical Coupling Factors of PZT Ceramics)

  • 이개명
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, PZT piezoelectric ceramic specimens with 4 compositions (Zr/Ti=50/50, 53/47, 56/44, 58/42) in $Pb(Zr,Ti)O_3$ system were fabricated. We studied effects of poling strength and thermal aging on the temperature characteristics of eletromechanical coupling factor k31 of the specimens, which were poled with the DC electric fields, 1.5, 2.5 and 3.5 kV/mm respectively and thermally aged for an hour at $200^{\circ}C$. The eletromechanical coupling factor k31 of the specimen with the composition Zr/Ti= 53/47, nearest to the morphotropic phase boundary decreased the most greatly, irrelevant to the intensity of poling field, due to 1st thermal aging. And the temperature coefficient of eletromechanical coupling factor k31 was (-) in the tetragonal phase composition and (+) in the rhombohedral phase composition, which is reverse in the temperature coefficient of resonance frequency. It is interesting that eletromechanical coupling factor k31 of PZT ceramics is shown to be able to increase as temperature increase in the interval $-20{\sim}80^{\circ}C$.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Advances and challenges in impedance-based structural health monitoring

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제4권4호
    • /
    • pp.301-329
    • /
    • 2017
  • Impedance-based damage detection method has been known as an innovative tool with various successful implementations for structural health monitoring of civil structures. To monitor the local critical area of a structure, the impedance-based method utilizes the high-frequency impedance responses sensed by piezoelectric sensors as the local dynamic features. In this paper, current advances and future challenges of the impedance-based structural health monitoring are presented. Firstly, theoretical background of the impedance-based method is outlined. Next, an overview is given to recent advances in the wireless impedance sensor nodes, the interfacial impedance sensing devices, and the temperature-effect compensation algorithms. Various research works on these topics are reviewed to share up-to-date information on research activities and implementations of the impedance-based technique. Finally, future research challenges of the technique are discussed including the applicability of wireless sensing technology, the predetermination of effective frequency bands, the sensing region of impedance responses, the robust compensation of noise and temperature effects, the quantification of damage severity, and long-term durability of sensors.

CMP시 SiO2 슬러리의 마찰 특성과 연마결과에 관한 연구 (A Study on Frictional Characteristics and Polishing Result of SiO2 Slurry in CMP)

  • 이현섭;박범영;서헌덕;정재우;정석훈;정해도
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.983-989
    • /
    • 2005
  • The effects of mechanical parameters on the characteristics of chemical mechanical polishing(CMP) can be directly evaluated by friction force. The piezoelectric quartz sensor for friction force measurement was installed, and friction force could be detected during CMP process. Furthermore, friction energy can be calculated by multiplying relative velocity by integration of the friction force throughout the polishing time. $SiO_2$ slurry for interlayer dielectric(ILD) CMP was used in this experiment to consider the relation of frictional characteristics and polishing results. From this experiment, it is proven that the friction energy is an essential factor of removal rate. Also, the friction force is related to removal amount per unit length(dH/ds) and friction energy has corelation to the removal rate(dH/dt) and process temporature. Moreover, within wafer non-unifornity(WIWNU) is related to coefficient of friction because of the mechanical moment equilibrium. Therefore, the prediction of polishing result would be possible by measuring friction force.

평판형 $L_{1}-B_{8}$ 모드 초음파 전동기의 설계 및 제작 (Design and Fabrication of Flat-Type $L_{1}-B_{8}$ Mode Ultrasonic Motors)

  • 우상호;김우태;신순인;김동연;김진수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.414-417
    • /
    • 2001
  • Recently, developments of device using characteristics of ceramics as a new technical material is in progress. While doing so, Ultrasonic motor which is a part of research & development of piezo-actuator by piezo-effects is being used in the various applications. So, we fabricated a flat-type $L_{1}-B_{8}$ mode Ultrasonic motor and measured the operation characteristics of its. The size of USM is 80*20*1.5[$mm^{3}$](length*width*thickness) and is constructed with stator by piezo-ceramics and stainless elastic body and rotator by bearings. As results of experiments, the fastest speed of revolution(v), the maximum torque(T) and the efficiency( $\eta$ ) were 37.5[cm/sec], 5.0[ $mN{\cdot}m$ ] and 1.17[%] respectively when 27.9[kHz], 150[gf], 50[V] were applied. So, we think this $flat-type_{1}-B_{8}$ mode Ultrasonic motor is able to be used for applications in forwarding device of a paper or electric card and so on.

  • PDF

In-line measurement of residence time distribution in twin-screw extruder using non-destructive ultrasound

  • Lee, Sang-Myung;Park, Jong-Cheol;Lee, Sang-Mook;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.87-95
    • /
    • 2005
  • In this study, we performed RTD measurement at the die exit of co-rotating twin-screw extruder using a non-destructive ultrasonic device. The ultrasonic device was attached at slit die and was composed of a steel buffer rod and 10 MHz longitudinal piezoelectric ultrasonic transducer. This in-line ultrasonic monitoring method is based on the ultrasonic response of $CaCO_3$ filled in polymer. The RTD is evaluated by variation of ultrasonic attenuation with time caused by change of the tracer concentration during extrusion. The ultrasonic tracer, pellet type of compounded $CaCO_3$ in polymer was used in this study. The effects of tracer concentration on RTD and flow patterns were studied. Evaluation for the residence functions at different screw speeds, feeding rates and screw configurations were also carried out.

PZT 세라믹스이 압전 및 기계적 특성에 미치는 어닐링 분위기의 영향 (Effect of annealing Atmosphere on the Piezoelectric and Mechanical Properties of PZT Ceramics)

  • 임진호;손준호;김진호;조상희
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.1037-1043
    • /
    • 1994
  • The effects of annealing atmosphere and temperature on piezoelectricity (k33) and the mechanical strength of machined PZT was studied. Morphotropic Nb-doped PZT was sintered, machined to a rod and then annealed between 80$0^{\circ}C$ and 100$0^{\circ}C$ in air, PbZrO3, and CuO atmospheres respectively. In air or PbZrO3 atmosphere, the compressive strength of Nb-doped PZT increased by 12% with little change in k33 irrespective of annealing temperature. In CuO atmosphere, on the other hand, the compressive strength increased by 20% with little change in k33 at 80$0^{\circ}C$ but both turned to significant decrease above 90$0^{\circ}C$. The examination of the phase distribution and microstructure beneath the surface of CuO-treated PZT revealed that the changes in compressive strength and k33 are closely related to the reaction between PZT and vaporized CuO:liquid PbO precipitated in shallow surface region by the substitution of Cu to Pb sites enhances the decrease in microcracks and the surface roughness at 80$0^{\circ}C$ ; rapid evaporation of precipitated PbO expands a porous region of changed composition into the bulk above 90$0^{\circ}C$.

  • PDF