• 제목/요약/키워드: piezoelectric effects

검색결과 379건 처리시간 0.025초

유한요소해석을 이용한 TPMS용 압전 발전소자의 동특성 해석 (A Study on the Dynamic Characteristics of TPMS Piezoelectric Element using Finite Element Method)

  • 김성준;정해일
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1341-1347
    • /
    • 2013
  • Energy harvesting is a clean technology to obtain energy from the surrounding environment such as wind, sun, vibration and so on. In particular, the current TPMS (Tire Pressure Monitoring Device) is very small and attached to the outside of a vehicle and power supply of the TPMS is limited. Therefore, energy harvesting using vibration energy of piezoelectric materials is important to the TPMS. In this paper, we analyzed several models using ANSYS which is one of the FEA (Finite Element Analysis) package and compared corresponding strain frequency response functions of the TPMS. In addition, we confirmed that dynamic characteristics variations according to geometry changes have effects on the performance of the TPMS.

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

터널링효과를 이용한 초미세 가공표면의 형상측정 (Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy)

  • 정승배;이용호;김승우
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

타이어 모델을 이용한 계측 축중의 보상 방법 (A Method toy Modifying Dynamically Measured Axle Load Using Tire model)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.437-437
    • /
    • 2000
  • It is more difficult to accurately weigh vehicles in motion than to weigh standing vehicles. The difficulties in weighing vehicles result from sensor Limitations as well as dynamic effects induced by vehicle/pavement interactions, This paper presents a method for improving the accuracy of measured axle load information using the so-called adaptive footprint tire model. The total vehicle weight as well as individual axle weight information are obtained experimentally using two piezoelectric sensors. Results are obtained for a light car, mid-site passenger car, and 2 dump trucks with known weight experimental results show that the proposed method using the tire model is accurate.

  • PDF

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

[001] 및 [011] 방향 분극의 압전 단결정 PMN-PZT 를 이용한 진동 에너지 수확 특성 (Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals)

  • 선경호;김영철;김재은
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.539-543
    • /
    • 2014
  • This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. Single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] were considered. For the [011] orientation, because material properties such as the stiffness, piezoelectric strain coefficients are not the same in the directions normal to the crystallographic axis, the effects of the transversely anisotropy on the magnitude and frequency bandwidth of output power were also analyzed.

  • PDF

족저 압력분포 평가를 위한 Foot Track System의 개발 (Development of the foot track system for the evaluation of foot plantar surface pressure distribution)

  • 이기훈;정민근;김태복
    • 대한인간공학회지
    • /
    • 제11권2호
    • /
    • pp.23-33
    • /
    • 1992
  • The distribution of the pressure between the sole of a feet and a supporting surface can reveal the information about the structure and fonction of the foot and the posural control of the whole body. In particular, the measurement of the vertical contact forces between the plantar surface of the foot and the shoe insole is of great importance to reveal the loading distributio patterns incurred from a particular shoe midsole design. In order to investigate the plantar surface pressure distribution, an insole-type sensor with a piezoelectric material is developed and tested. The present paper describes a new method to completely reduce both the shear force and pyroelectric effects that are normally caused from piezoelectric materials.

  • PDF

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.

초음파 미세혼합기의 해석 및 설계 (Analysis and Design of Ultrasonic Micromixer)

  • 김덕종;허필우;박상진;김재윤;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.101-106
    • /
    • 2003
  • In this work, mixing phenomena in the mixing chamber of a ultrasonic micromixer are analyzed through an analytical approach. A simplified 2-dimensional model for the ultrasonic micromixer is presented. Analytical solutions for fluid flow induced by ultrasonic waves are obtained through successive approximations method. From simulation results on thermal diffusion in the mixing chamber, effects of relative location, size, and vibration frequency of a piezoelectric material and aspect ratio of the mixing chamber on mixing performance of the ultrasonic micromixer are investigated. Finally, design guidelines for the ultrasonic micromixer are suggested based on the parametric study.

  • PDF

사각 기판의 외형비가 길이진동을 이용하는 초소형 공진자의 공진특성에 미치는 영향 (Effects of three side ratios of the rectangular substrate on the resonant characteristics of the ultra-small size resonator using its length extensional vibration)

  • 한성훈;김병효;이개명
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.877-880
    • /
    • 2000
  • The length extensional vibration mode of a piezoelectric ceramic substrate is used in fabricating the ultra-small size resonators and filters. In general, the three side ratios of the substrate effect the resonant characteristics of the resonator using its length extensional vibration. In this paper, their relationships are studied. We know that changing the ratio of its length to its width makes possible to change the resonant frequency of the width vibration without degrading the length extensional vibration.

  • PDF