• Title/Summary/Keyword: piezoelectric effects

Search Result 379, Processing Time 0.023 seconds

Comparisons on Dielectric and Peizoelectric Proeprties of Rhombohedral, Tetragonal and Morphotropic Phase Boundary in Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 System with MnO2 Addition (Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3계의 삼방정, 정방정 및 상경계조성에서의 MnO2 첨가에 따른 유전 및 압전특성에 비교)

  • 전구락;손정호;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.488-494
    • /
    • 1988
  • Effects of MnO2 addition on themicrostructure, dielectric and piezoelectric properties of Rhombohedral, Tetragonal and Morphotropic phase boundary(MPB) in Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 system were investigated and respectively the amount of MnO2 addition was 0, 0.2, 0.5, 1.0, 3.0wt%. In the tetragonal region, compared with the Rhombohedral and Morpotropic phase boundary, Mechanical quality factor(Qm), Curie temperature(Tc) and Dissipation factor were promoted by addition of MnO2. According to the results of the microstructure, dielectric and piezoelectric properties, the solid solution range of MnO2 addition in this system was 0.2-0.5wt%.

  • PDF

Effects of 2-dimensional vibration on the surface roughness in micro milling (미세밀링 가공 시 2차원 진동이 표면거칠기에 미치는 영향)

  • Kim, Gi Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.81-86
    • /
    • 2013
  • For a 2-dimensional(2D) vibration milling, an excitation work-table was developed using two piezoelectric materials orthogonally arranged, where the trochoidal trajectory of a milling tool is combined with 2 dimensional elliptical vibration of a work-table. Applying 3kHz excitation frequency and 7~8mm amplitude of vibration to micro milling process with brass and nickel materials, the roughness in both bottom and side surface is much more improved compared to the surface by conventional milling process, which is attributed to decreased frictional force, increased cutting speed, and rubbing effect of a 2 dimensional vibration.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.587-595
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC(macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1119-1124
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC (macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

NiO Effects on Sintering Temperature and Piezoelectric Properties of PNN-PZT (NiO 첨가가 PNN-PZT계 세라믹스의 소결 온도 및 압전 특성에 미치는 영향)

  • Jeong, Ji-Hyun;Kim, Sung-Jin;Park, Eun-Hye;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.323-323
    • /
    • 2010
  • PNN-PZT계 세라믹스를 $Pb(Ni_{1/3}Nb_{2/3})_{0.4}(Zr_{0.48}Ti_{0.52})_{0.6}O_3$ 조성으로 설계하고, 이에 낮은 융점의 NiO를 1wt% 첨가하여 저온소결 특성을 평가하였다. 일반적인 세라믹 분말 소결법을 이용하여 시편을 제작하였으며, 이때의 소결온도는 $850{\sim}105^{\circ}C$ 범위에서 변화시켰다. 소결체의 압전 및 유전적 특성을 평가를 하고. SEM 및 XRD를 이용한 미세구조 및 상 분석도 수행하였다. 이러한 실험 결과, PNN-PZT 세라믹은 NiO의 첨가로 $1000^{\circ}C$ 정도에서도 저온소결이 가능한 것을 확인하였다.

  • PDF

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

Buckling response of smart plates reinforced by nanoparticles utilizing analytical method

  • Farrokhian, Ahmad
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This article deals with the buckling analysis in the plates containing carbon nanotubes (CNTs) subject to axial load. In order to control the plate smartly, a piezoelectric layer covered the plate. The plate is located in elastic medium which is modeled by spring elements. The Mori-Tanaka low is utilized for calculating the equivalent mechanical characteristics of the plate. The structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The Navier method is applied to obtain the bulking load. The effects of the applied voltage to the smart layer, agglomeration and volume percent of CNT nanoparticles, geometrical parameters and elastic medium of the structure are assessed on the buckling response. It has been demonstrated that by applying a negative voltage, the buckling load is increased significantly.