• Title/Summary/Keyword: piezoceramic actuator

Search Result 84, Processing Time 0.028 seconds

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

Application of Piezoceramic Actuator for Inch-Worm (이송 자벌레로의 압전소자 응용)

  • 윤재헌;채재희;김인수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.877-880
    • /
    • 2001
  • This paper presents the new linear motion device so called "inch-worm" which gets large displacement by incrementally summing small displacements of PZT actuators. Dynamics stiffness of inch-worm is generally low compared to its driving condition due to the requirement of inch-worm like small size and light weight. This low stiffness may degenerate the positional precision of inch-worm. An inch-worm is realized using three PZT actuators, a monolithic moving device and a guide way frame. Driving input signal is shaped to reduce the residual vibration of inch-worm by LQG controller and cycloid step input. The practical feasibility of inch-worm is also examined by running test.ning test.

  • PDF

[ $H_{\infty}$ ] Pressure Control of Pneumatic Valve Driven by Piezoactuators (압전 작동기로 구동 되는 공압 밸브의 $H_{\infty}$ 압력제어)

  • Yoo, J.K.;Cho, M.S.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.673-678
    • /
    • 2001
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust $H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

  • PDF

Dynamics Modeling of Beams with Piezoelectric Resonant Shunting (압전 공진 션트회로가 부착된 빔의 동적 모델링)

  • Park Cheol Hyu;Park Hyeon Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.328.2-328
    • /
    • 2002
  • General modeling of a resonant shunting damper has been made Iron piezoelectric sensor/actuator equation. It is found that an additional damping, which is augmented to a system, is generated by the shunt damping effect The transfer function of the tuned electrical absorber is derived for both series and parallel shunt circuit. The governing equations and associated boundary conditions are derived using Hamilton's Principle. The shunt voltage equation is also derived from the charge generated in PZT due to beam vibration. The frequency response function of the obtained mathematical model is compared with that of the tuned eledtrical absorber and experimental work. The vibration amplitude is reduced about 15 dB at targeted second mode frequency.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

An Experimental Study on the Stochastic Control of a Flexible Structural System (유연한 구조물의 확률론적 제어에 대한 실험적 연구)

  • Kim, Dae-Jung;Heo, Hoon
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.502-508
    • /
    • 1999
  • Newly developed control methodology applied to dynamic system under random disturbance is investigated and its performance is verified experimentall. Flexible cantilever beam sticked with piezofilm sensor and piezoceramic actuator is modelled in physical domain. Dynamic moment equation for the system is derived via Ito's stochastic differential equation and F-P-K equation. Also system's characteristics in stochastic domain is analyzed simultaneously. LQG controller is designed and used in physical and stochastic domain as wall. It is shown experimentally that randomly excited beam on the base is controlled effectively by designed LQG controller in physical domain. By comparing the result with that of LQG controller designed in stochastic domain, it is shown that new control method, what we called $\ulcorner$Heo-stochastic controller design technique$\lrcorner$, has better performance than conventional ones as a controller.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동되는 공압 밸브의 압력제어)

  • Cho, M.S.;Yoo, J.K.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.554-558
    • /
    • 2000
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a sliding mode controller which is known to be robust to uncertainties such as disturbance is formulated in order to achieve accurate regulating and tracking control of the desired pressure. The controller is experimentally realized and control performances for various pressure trajectories are presented in time domain. The control bandwidth of the valve system which directly represents the fastness is also evaluated in the frequency domain.

  • PDF

Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis (유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

Design of Acoustic Element and Case for the Piezoelectric Acoustic Transducer (압전형 음향변환기용 음향소자 및 케이스의 설계)

  • 김현철;고영준;박재성;남효덕;장호경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.711-714
    • /
    • 2000
  • In this study, the physical properties of the acoustic element and case with metal-piezoelectric ceramics were analyzed. The dielectric and piezoelectric properties of 0.5 wt% MnO$_2$and NiO doped 0.1Pb(Mg$\_$1/3Nb$\_$2/3)O$_3$-0.45PbTiO$_3$-0.45PbZrO$_3$ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. Also, the acoustic characteristics for the geometrical form of case have been investigated. The design and fabrication method worked in this paper can be utilized in development of actuator and acoustic device.

  • PDF