• Title/Summary/Keyword: piezo-composite actuator

Search Result 31, Processing Time 0.027 seconds

Vibration Control of a Intelligent Cantilevered Beam with a Distributed PVDF Sensor and PZT Actuator

  • Yun, Yeo-Hung;Kwon, Tae-Kyu;Lee, Seong-Cheol;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.5-22
    • /
    • 2001
  • Robust control of a GFR composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented En this paper. Modal analysis method and modal coordinates are introduced to obtain the state educations of the structural system. 1st and 2nd natural frequencies are considered In the modeling, because robust control theory which is robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$\^$$\infty$/ theory do not satisfy control performance, it is improved by ${\mu}$-synthesis method with D-K Iteration so that the ${\mu}$-controller based on the structured singular value satisfies the nominal performance and robust performance.

  • PDF

Design and evaluation of LIPCA-actuated flapping device (LIPCA 작동기로 구동되는 날갯짓 기구의 설계 및 성능평가)

  • Lee, Seung-Sik;Syaifuddin, Moh;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.48-53
    • /
    • 2005
  • In this paper, we present our recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 4 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

Real-time Measurement of Precision Displacement using Fiber Optic EFPI Sensor (광섬유 EFPI 센서를 이용한 실시간 고정밀 변위 측정)

  • 박상욱;김대현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.154-157
    • /
    • 2003
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown, and the sinusoidal approximation algorithm that estimates past and coming fringe values was verified through the linearity. Real-time signal processing program was developed, and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below 0.4 ~ 10 nm in the displacement range of $0 ~ 300\mu\textrm{m}$ was obtained by reducing the photodetector noise using low-pass filter and signal averaging. The nano-translation stage with a Piezo-electric actuator and the EFPI sensor system was designed and tested. This stage successfully reached to the desired destination in $15\mu\textrm{m}$ range within 1 nm accuracy.

  • PDF

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

Actuation Performance of LIPCA and bare PZT at Active Vibration Control of a Cantilever Beam (압전 복합재료 작동기 LIPCA와 단일 PZT의 보 진동 제어 성능 비교)

  • ;Gu, Nam-Seo;Park, Hun-Cheol;Lee, Yeong-Jae;Yun, Gwang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.60-66
    • /
    • 2006
  • The purpose of this paper is to evaluate potential application of Lightweight Piezo-composite Actuator (LIPCA) to suppress vibrations of structures. The LIPCA, consisting of a piezoelectric layer, a carbon/epoxy layer and glass/epoxy layers, has advantages in terms of high performance, durability and reliability, compared to the bare piezoelectric ceramic (PZT) actuator. We performed two kinds of experiments on static actuation and active vibration suppression to investigate the actuation performances of the LIPCA and the bare PZT. We attached the actuator on one side and a strain gage on the other side of an aluminum beam. In the static actuation test, we evaluated the performance by comparing equivalent actuation moments of the LIPCA and the bare PZT due to the applied voltage. In the active vibration control test, control signals were generated to suppress the vibration of the beam by the PID control algorithm based on the measured strain signals. The performances were estimated based on settling times of the strain responses. It can be concluded that the LIPCA has better actuation performances than the bare PZT in active control of free vibration as well as static actuation.

Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators (인조 꼬리지느러미가 압전작동기 구동형 생체모사 물고기 로봇의 성능에 미치는 영향)

  • Heo, Seok;Park, Hoon-Cheol;Tedy, Wiguna;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.429-434
    • /
    • 2007
  • This paper presents an experimental and parametric study of a biomimetic fish robot actuated by the Lightweight Piezo-composite Actuator(LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF(Body and Caudal fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, area, and aspect ratio. It was found that a high aspect ratio caudal fin contributes to high swimming speed. The fish robot was propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for 300 Vpp input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot was examined by Strouhal number, Froude number, Reynolds number, and Net forward force.

  • PDF

Electromechanical analysis of 2-2 cement-based piezoelectric transducers in series electrically

  • Wang, Jianjun;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.267-284
    • /
    • 2014
  • This paper aims to present the analytical solutions of 2-2 cement based piezoelectric transducers in series electrically based on the theory of piezo-elastic dynamics. The solutions of two different kinds of 2-2 cement based piezoelectric transducers under external harmonic load are obtained by using the displacement method. The effects of electrical connection of piezoelectric layers, loading frequency, thickness and distance of piezoelectric layers on the characteristics of the transducers are discussed. Comparisons with other related experimental investigations are also given, and good agreement is found. The proposed 2-2 cement based piezoelectric transducers have a great potential application in monitoring structural health in civil engineering and capturing mechanical energy or monitoring train-running safety in railway system and traffic safety in road system.

Static measurement of magnetostriction of FeCoGe/phenol composites (FeCoGe/페놀 복합체의 정적 자기변형 측정)

  • Park, K.I.;Na, S.M.;Shin, K.H.;Lim, S.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.577-580
    • /
    • 2003
  • The magnetostriction of FeCoGe/phenol composites, which is one of the magnetostrictive materials, measured at the external magnetic field. The measurement was carried out using the electrical-resistance strain gage, the wheaten's Bridge for eliminating the unnecessary voltage, and the lock-in-amp for signal amplification and noise filtering. When the external magnetic field was applied in the longitudinal the samples, the maximum strain of 120ppm was taken with regard to the 10wt.% phenol composite. This results indicate that the FeCoGe/phenol composites can be useful as an actuator because it has larger stain than the other solid state actuators such as piezo electric materials.

  • PDF

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle (인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험)

  • Heo, Seok;Wiguna, T.;Goo, Nam-Seo;Park, Hoon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.