• Title/Summary/Keyword: pier bridge

Search Result 489, Processing Time 0.025 seconds

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.

Effects of Inelastic Demand Spectrum on Seismic Capacity Evaluation of Curved Bridge by Capacity Spectrum Method (역량스펙트럼을 이용한 곡선교의 내진성능평가에 대한 비탄성요구스펙트럼의 영향)

  • Cho, Sung Gook;Park, Woong Ki;Joe, Yang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.195-206
    • /
    • 2011
  • The capacity spectrum method(CSM) has been more frequently used as a tool to evaluate the seismic capacity of the structure. Many formulas of strength reduction factors(SRF) have been proposed and adopted to generate the inelastic demand spectrum for the CSM. This study evaluates the impacts of the type of the SRF on the inelastic demand spectrum and finally on the seismic response displacement of curved bridge. For the purpose, the several existing formulas of SRFs were comparatively investigated through the case study. Curved bridges with different subtended angles were selected and the displacements of the bridge piers were estimated by using the different formulas of SRFs. Nonlinear time history analyses were also performed for the validation purpose of the CSM results. According to study results, the CSM may generate the larger displacement responses than the actual behaviors for the curved bridge with larger subtended angles. Though many methods have been suggested to generate the inelastic demand spectrum for CSM, they might not give noticeable differences in inelastic displacement of the bridge pier.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Thermal Behavior and Structral Efficiency of Rahmen with Sliding-Girder (슬라이딩 거더를 가진 라멘의 온도거동과 구조효율)

  • Jeong, Dal-Yeong;Jeong, Chang-Hyun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Although the temperature load is an important load among the various loads affecting the behaviors of general rahmen-type temporary bridges (GRTB), no study of the thermal load has been carried out. In the case of GRTB, horizontal displacement should be free, and the generated internal force should be minimized to reduce stress due to a temperature load. Sliding girder type bridge (SGTB) allows the axial deformation due to thermal load, and decreases the axial stress and delivers bending stress. This study examined the temperature behavior of an SGTB. Structural analysis was carried out for four types of spans (eq, 10, 20, 30, and 40m) and three types of pier heights (eq, 2, 4, and 6m) along with the GRTB. The applied loads were a fixed vertical load and an axial temperature load. The friction coefficient was 0.4, which is a representative value of a steel girder. Consequently, the stress of the SGTB increased with increasing span length, regardless of the temperature load. The stress of the GRTB increased with increasing temperature and span length. Compared to the GRTB, the stress of the SGTB decreased by 20% to 50% at the center of the girder and by 50% to 90% at the bottom of the pier. This could secure the structural efficiency compared to the GRTB with the same specifications.

The Evaluation of Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능 평가)

  • 정지만;장승필;인성빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A recent development, a concrete-filled steel(CFS) pier is an alternative to a reinforced concrete bridge pier in an urban area, because of its fast construction and excellent ductility against earthquakes. The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

Soil Modelling Method to Design Bent Foundation with Drilled Shaft Pier (단일 현장타설말뚝의 설계시 지반 모델링 방법)

  • Jeon, Kyung-Soo;Han, Kyoung-Bong;Song, Pil-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.368-376
    • /
    • 2010
  • The bent foundation with single drilled shafts is suitable and economical in South Korea, which has good rock in a shallow depth. This foundation has been designed with an elastic design concept. To apply a plastic design concept written in Korea Bridge Design Criteria, a detail design regulation, which includes the method for a plastic hinge point to occur above the ground, rebar arrangement and soil modelling, should be defined. Soil modelling should be considered in the respect of structural engineer's practicality. In this paper, single drilled shaft piers with 1m diameter are constructed, and cyclic lateral load tests loaded at 4m above the ground are taken to examine the behavior. Reduced diameter shaft above the ground and remaining the steel casing under the ground were used to induce plastic hinge to occur above the ground. Simplified soil models such as elastic relation and p-y curve are adapted, and the prediction results are compared with test results. Prediction results of a model bridge were compared according to soil models with time domain analyses, and design criteria of soil were proposed.

  • PDF

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.