• Title/Summary/Keyword: phytosanitary treatment

Search Result 12, Processing Time 0.016 seconds

Applicability of CATIS as a Postharvest Phytosanitation Technology against the Peach Fruit Moth, Carposina sasakii Matsumura (복숭아심식나방(Carposina sasakil)의 수확 후 소독 처리로서 CATTS 기술의 적용 가능성)

  • Son, Ye-Rim;Choi, Kyung-Hee;Kim, Yong;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • As an environment-friendly phytosanitary measure, CATTS (controlled atmosphere temperature treatment system) has been developed to kill several quarantine insect pests infesting subtropical agricultural commodities. This study tested any possibility to apply CATTS to apples to effectively eliminate the peach fruit moth, Carposina sasakii, which has been regarded as a quarantine insect from the imported countries. When the larvae of C. sasakii were directly exposed to $46^{\circ}C$ (an installed lethal temperature of CATTS), they showed a median lethal time at 14.66 min. Addition of high carbon dioxide to the temperature treatment enhanced the thermal limit susceptibility of C. sasakii to $46^{\circ}C$. CATTS device was constructed to automatically control $CO_2$ concentration and temperature with real-time monitoring both in the chamber and in the fruit. The larvae internally infesting apples were tested using the CATTS device and showed 100% lethality after 60 min exposure to a treatment of $46^{\circ}C$ under 15% $CO_2$ in the chamber. Relatively long exposure may be due to the deviation between the ramping temperature ($0.35^{\circ}C$/min) of the chamber and the ramping temperature (0.12-$0.23^{\circ}C$/min) inside apple fruit, where the tested larvae were located. This study suggests a possibility that CATTS can be applied as a quarantine measure to kill the larvae of C. sasakii locating inside the apples.

Effect of Electron Beam Irradiation on the Development and Reproduction of Phthorimaea operculella (Lepidoptera: Gelechiidae) (전자빔 조사가 감자뿔나방의 발육과 생식에 미치는 영향)

  • Cho, Sun-Ran;Ahn, Hyeonmo;Eom, Taeil;Kyung, Yejin;Lee, Seung-Ju;Kim, Hyun Kyung;Koo, Hyun-Na;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.255-262
    • /
    • 2021
  • The potato tuber moth, Phthorimaea operculella (Zeller) has been known as a quarantine pest of potato. This study investigated inhibition doses of electron beam irradiation (EBM) by comparing their effects on the development and reproduction and DNA damage of the insect pest. Eggs (0-12 h old), larvae (3rd and 5th instar), pupae (less than 1 d old after pupation) and adults (less than 1 d old after emergence) were irradiated with increasing doses of EBM. The EBM with 150 Gy could not completely prevent the hatchability of eggs and pupation of the hatched larvae. The hatchability from the irradiated eggs were 19.3%. However, adult emergence from the irradiated eggs were completely inhibited. When 3rd and 5th instar larvae were irradiated at 100 Gy, the adult emergence from the irradiated larvae and the fecundity of the adults were completely inhibited. When pupae and adults were irradiated at 300 Gy and 400 Gy, respectively, the hatchability of the F1 eggs was completely inhibited. The alkaline comet assay on the level of DNA damage by EBM in P. operculella adults indicates that the EBM increased DNA damage level in a dose-dependent manner, and the damage was repaired in a time-dependent manner. These results may recommend EBM of 150 Gy as a phytosanitary treatment for P. operculella. However further confirmative study is required for the practical application of this EBM dose for P. operculella disinfestation.