• Title/Summary/Keyword: phyto-PAM

Search Result 4, Processing Time 0.019 seconds

Seasonal Variations of Primary Productivity Analyzed by Phyto-PAM Chlorophyll Fluorometry in the Beopsu Marsh, Haman-gun, Gyeongsangnam-do (경상남도 함안군, 법수늪에서 엽록소 형광광도계(Phyto-PAM)에 의한 일차생산의 계절변동)

  • Kim, Mi-Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.76-86
    • /
    • 2008
  • The seasonal variations of primary production were investigated by phyto-PAM chlorophyll fluorometry as well as classical methods (standing crops of phytoplanktons and chlorophyll ${\alpha}$) in the Beopsu Marsh, Haman-gun, Gyeongsangnam-do. The amounts of turbidity, SS, T-N, T-P, BOD, COD, Ca$^{2+}$ and Cl$^-$ were the highest at the station 3, where located in flowout site of wastewater treated by the filtration plants. The water quality was the third level by the standard of BOD and COD. The amount of chlorophyll a (268.8 mg L$^{-1}$) was the highest at the station 2 in April because the cell density (2,677 cells mL$^{-1}$) of Micractinium pusillum increased suddenly from February (180 cells mL$^{-1}$). The patterns of primary production of phytoplankton by phyto-PAM chlorophyll fluorometry were fallen in with those of standing crops and chlorophyll a of phyto-planktons. The primary production was varied according to stations and seasons. The water environments of the Beopsu Marsh as a natural mounument should be under the control of a regular examination in order to preserve the ecosystem.

Evaluation of the ETRmax in Microalgae Using the PHYTO-PAM Fluorometer (광합성 측정기를 이용한 미세조류의 광합성 효율 측정)

  • Cho, Eun-Seob;Lee, Pil-Yong;Oh, Hyun-Ju;Choi, Yoon-Seok;Choi, Yang-Ho;Lee, Sam-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.727-735
    • /
    • 2006
  • In this study, the PHYTO-PAM-fluorometric method was used to evaluate the ETR$_{max}$ in terms of sensitivity to DIN/DIP against 14 microalgae: Prorocentrum micans, Heterocapsa triquetra, Gymnodinium impudicum, Cymnodinium catenatum, Amphidinium caterae, Chlorella vulgaris, Chroococcus minutus, Microcystis aeruginosa, Chlorella ellipsoidea, Nannochloris oculata, Oocystis lacustris, Chroomonas salina, Gloeocystis gigas, and Prymnessium parvum. We found that P. micans, H. triquetra, and A. caterae exposed to the maximum level of DIN/DIP were significantly smaller in the ETR$_{max}$ than that of the minimum and moderate mixture. Unlikely the ETR$_{max}$, the initial slope alpha was not significantly different at the level of 60 DIN/DIP. In G. catenatum, the moderate levels of 15 and 20 in DIN/DIP were found to be significantly different from the ETR$_{max}$ at Chl-Ch4. Gymnodinium impudicum had a higher value than that of the ETR$_{max}$ than that of dinoflagellates used in this study, ranging from 306.1 (Ch4, DIN/DIP: 10) to 520.1 (Ch4, DIN/DIP: 30). The ETR$_{max}$ value obtained from other microalgae was similar to C. impudicum at any of the ratios of DIN/DIP and channels. Consequently, the influence of offshore water current assures us of the suppression of photosynthesis and electron transport rate in dinoflagellates. Gymnodinium impudicum has not been researched in the area of red tides in Korea, but it will be enough to creat the massive algal blooms in the future because of higher potential photochemical availability.

Development of a Fluorescence Measurement System Capable of Rapid Red Tide Monitoring (신속한 적조 예찰이 가능한 형광 측정시스템 개발)

  • Kyung-hoon Baek;Yeongji Oh;Hyeonseo Cho;Yoonja Kang;Joon-seok Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.30-33
    • /
    • 2024
  • The occurrence of harmful algae on the coast of Korea has been a cause of damage to the aquaculture industry and deterioration of the coastal ecosystem environment. A method is required to predict their outbreak in real-time at the site. Therefore, this study attempted to develop a small hybrid optical sensor and real-time monitoring system based on LiDAR that can be used in the field and laboratory and can be applied to various platforms. FMS-L specifically suggested the amount of Chlorophyll a (Chl a) in the sample by measuring and analyzing the fluorescence emitted by the irradiating light. The accuracy of FMS-L was verified by measuring the concentrations of standard Chlorophyll a substances and Margalfidinium polykirkoids. In addition, the precision was verified by comparing the measurement results of FMS-L using commercial equipment Phyto-PAM-II. This equipment is compact and easy to move. Therefore, it can be easily applied to field surveys, allows short time measurements (10 s), and can be applied at a distance of 10 m from the measurement site.

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea (섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가)

  • Lim, Youngkyun;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.513-523
    • /
    • 2017
  • We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.