• Title/Summary/Keyword: phytic acid degradation

Search Result 11, Processing Time 0.032 seconds

Degradation of Phytic acid in Chungkookjang Fermented with Phytase-producing Bacteria (청국장 제조과정에서 Bacterial Phytase에 의한 Phytic Acid의 분해)

  • 정지흔;강성국;김용순;정희종
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.423-428
    • /
    • 1990
  • Three strains among 8 isolates from the fermented chungkookjang were shown the strong phytase productivities. The phytase activities in manufacturing chungkookjang with thrse bacteria were maximized after incubating at 35-$40^{\circ}C$, pH 7.0 for 5 day. The contents of same amino acids and riboflavin were increased in chungkookjang manufactured with these phytase-producing bacteria and the rate of phytic acid degradation was much higher in chungkookjang manufactured with a single or mixed cultures of these bacteria than in traditional chungkookjang.

  • PDF

Radiolytic and Antioxidative Characteristics of Phytic Acid by Gamma Irradiation (방사선 조사에 의한 Phytic Acid의 분해특성 및 항산화 활성)

  • Park, Hee-Ra;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1252-1256
    • /
    • 2004
  • Radiolytic characteristics of phytic acid by gamma irradiation were investigated, and the antioxidative activity between irradiated phytic acid and commonly used antioxidants including ascorbic acid, tocopherol and butylated hydroxyl anisole (BHA) was evaluated. Phytic acid sodium salt dissolved in a deionized distilled water was irradiated at 0, 5, 10, 15 and 20 kGy. It was found that the level of irradiation had an effects on the degree of degradation. After irradiation, stable DPPH radical scavenging capacity of phytic acid was newly observed, and it was significantly increased by dose-dependent manners (p<0.05). Antioxidant activity of phytic acid in the oil models was higher than that of the other antioxidant during storage, and phytic acid (400 $\mu\textrm{g}$/mL) irradiated at 20 kGy especially showed the highest antioxidative ability among the antioxidants tested during 3 weeks. Results indicated that irradiation induced the radiolysis of phytic acid in an aqueous model system, and the antiradical and antioxidative activities of irradiated phytic acid increased.

Effect of Phytase-Producing Bacteria on the Fermentation of Soybean and Corn Meals (Phytase 생산균주의 콩과 옥수수 가루의 발효에 미치는 영향)

  • 이홍렬;정희종
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.509-513
    • /
    • 1991
  • Two Phytase-producing bacteria isolated from the fermented soybean and corn meals, Enterobacter cloacae and Bacillus lichenifomis, were used to investigate the degradation of phytic acid and changes of some nutrient contents in fermented soybean and corn meals. The pH in fermented soybean meal with E, cloacae was rapidly dropped after 48 hours, but the pH in fermented corn meal was declined gradually for 5 days. The degradation of phytic declined acid were optimized at $35^{\circ}C$.pH 8.0 for 5 days and at $30^{\circ}C$, pH 7.0 for 5 days fermented with E. cloacae and B. iichenifomis, respectively. Riboflavin and vitamin $B_{12}$ contents were greatly increased after the fermentation with these two bacteria, and also available lysine, methionine and tryptophan contents were greatly increased.

  • PDF

Enzyme Kinetic Study for Degradation of Phytic acid by Phytase (Phytase에 의한 phytic acid의 분해 반응속도 연구)

  • Kim, Jae-Seok;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.300-304
    • /
    • 2011
  • Phytases are hydrolytic enzymes that catalyze the sequential hydrolysis of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) to myo-inositols with lower numbers of phosphate groups. Two types of phytases have been identified which initiate hydrolysis of the phytic acid at either the 3- or 6- position of the inositol ring. In the present investigation, a mathematical model was proposed and computed to estimate maximum enzyme reaction rate constants which fit the experimental data obtained by other authors. Although the data points were scattered to some extent, good agreement was found between the model and the experiment data. It appears that the maximum rate constants of removal of the first, second, and third phosphate groups were not equal. Also there was neither a steady trend upward or downward in the rate constants with the stepwise hydrolysis reactions.

Interaction of Phytic Acid with Minerals during Meju Preparation (Aspergillus oryzae를 이용한 메주제조 중 피트산과 무기질의 상호작용)

  • Kang, Hyeon-Ju;Park, Eun-Soon;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.403-407
    • /
    • 1984
  • The purpose of this study was to investigate the changes of phytic acid content and phytase activity and the interactions between phytic acid and minerals in the preparation of Meju (fermented steamed soybean mash with molds). Meju contained significantly lower phytic acid and higher phytase activity than both raw and cooked soybeans. This seems to be the result of degradation of phytic acid by phytase produced during preparation of Meju by Aspergillus oryzae. Fe, Zn, Ca contents of soybeans were not changed either by cooking or fermentation. However, these minerals in the retentate of ultrafiltration were significantly lower in Meju than in raw and cooked soybeans. This result indicated that there are lower mineral-phytic acid complex in Meju than in raw and cooked soybeans, which might contribute to higher bioavailability of these minerals in Meju.

  • PDF

Isolation of Bacillus sp. Producing Multi-enzyme and Optimization of Medium Conditions for Its Production Using Feedstuffs for Probiotics (Probiotics용 복합효소 분비 Bacillus sp.의 분리 및 원료사료를 이용한 균주 생산을 위한 배지 조건의 최적화)

  • 양시용;송민동;김언현;김창원
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.110-114
    • /
    • 2001
  • Isolation of BacilLus sp. producing multi-enzyme and optimization of medium conditions for its production using feedstuffs for probiotics were carried out in this study. A bacterium isolated from natural resources, namely Bacillus subtilis 4-3, has multi-enzyme activity (phytase. cellulase, xylanasc, protease, and amylase. In the culture of B. subtilis 4-3 using soybean meal and rice bran. relatively low phytate degradation was noted using whereas high phytate degradability was observed with wheat bran (80.63%). The optimal composition of medium using feedstuffs was 1.0% (w/v) soybean meal and 2% (w/v) molasses to yield high cell growth.

  • PDF

Degradation properties of phytin from soybean and rice bran by phytases produced from Aspergillus sp. 5990

  • J. S. Yang;H. J. Suh;H. S. Kang;T. S. Shin;D. S. Byun;Kim, H. R.
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.220-221
    • /
    • 2001
  • Phytic acid (myo-inositol 1,2,3,4,5,6-hexakisdihydrogen phosphate) is one of the major storage form of phosphorous in the seeds of plants, which are the principal components of feed stuffs. Monogastric animals like Pigs and poultry as well as fish lack phytase activities in their digestive system and most undigested phytic acid was excreted in their manure. (omitted)

  • PDF

Changes in Nutritive Value and Digestion Kinetics of Canola Seed Due to Microwave Irradiation

  • Ebrahimi, S.R.;Nikkhah, A.;Sadeghi, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.347-354
    • /
    • 2010
  • This study aimed to evaluate effects of 800 W microwave irradiation for 2, 4 and 6 min on chemical composition, antinutritional factors, ruminal dry matter (DM) and crude protein (CP) degradability, and in vitro CP digestibility of canola seed (CS). Nylon bags of untreated or irradiated CS were suspended in the rumen of three bulls from 0 to 48 h. Protein subfractions of untreated and microwave irradiated CS before and after incubation in the rumen were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Microwave irradiation had no effect on chemical composition of CS (p>0.05). There was a linear decrease (p<0.001) in the phytic acid and glucosinolate contents of CS as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased the phytic acid content of CS by 8.2, 27.6 and 48.6%, respectively. The total glucosinolate contents of CS microwave irradiated for 2, 4 and 6 min decreased by 41.5, 54.7 and 59.0% respectively, compared to untreated samples. The washout fractions of DM and CP and degradation rate of the b fraction of CP decreased linearly (p<0.001) as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased effective degradability (ED) of CP at a ruminal outflow rate of 0.05 $h^{-1}$ by 4.7, 12.3 and 21.0%, respectively. Microwave irradiation increased linearly (p<0.001) in vitro CP digestibility of ruminally undegraded CS collected after 16 h incubation. Electrophoresis results showed that napin subunits of untreated CS disappeared completely within the zero incubation period, whereas cruciferin subunits were degraded in the middle of the incubation period (16 h incubation period). In 4 and 6 min microwave irradiated CS, napin subunits were degraded after 4 and 16 h incubation periods, respectively, and cruciferin subunits were not degraded untile 24 h of incubation. In conclusion, it seems that microwave irradiation not only protected CP of CS from ruminal degradation, but also increased in vitro digestibility of CP. Moreover, microwave irradiation was effective in reducing glucosinolate and phytic acid contents of CS.

Effects of Gamma Irradiation on Chemical Composition, Antinutritional Factors, Ruminal Degradation and In vitro Protein Digestibility of Full-fat Soybean

  • Taghinejad, M.;Nikkhah, A.;Sadeghi, A.A.;Raisali, G.;Chamani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.534-541
    • /
    • 2009
  • The aim of this study was to evaluate the effects of gamma irradiation (${\gamma}$-irradiation) at doses of 15, 30 and 45 kGy on chemical composition, anti-nutritional factors, ruminal dry matter (DM) and crude protein (CP) degradibility, in vitro CP digestibility and to monitor the fate of true proteins of full-fat soybean (SB) in the rumen. Nylon bags of untreated or ${\gamma}$-irradiated SB were suspended in the rumens of three ruminally-fistulated bulls for up to 48 h and resulting data were fitted to a nonlinear degradation model to calculate degradation parameters of DM and CP. Proteins of untreated and treated SB bag residues were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. The chemical composition of raw and irradiated soybeans was similar. Results showed that phytic acid in ${\gamma}$-irradiated SB at dose of 30 kGy was eliminated completely. The trypsin inhibitor activity of 15, 30 and 45 kGy ${\gamma}$-irradiated SB was decreased (p<0.01) by 18.4, 55.5 and 63.5%, respectively. From in sacco results, ${\gamma}$-irradiation decreased (p<0.05) the washout fractions of DM and CP at doses of 30 and 45 kGy, but increased (p<0.05) the potentially degradable fractions. Gamma irradiation at doses of 15, 30 and 45 kGy decreased (p<0.05) effective degradability of CP at a rumen outflow rate of 0.05 $h^{-1}$ by 4.4, 14.4 and 26.5%, respectively. On the contrary, digestibility of ruminally undegraded CP of irradiated SB at doses of 30 and 45 kGy was improved (p<0.05) by 12 and 28%, respectively. Electrophoretic analysis of untreated soybean proteins incubated in the rumen revealed that ${\beta}$-conglycinin subunits had disappeared at 2 h of incubation time, whereas the subunits of glycinin were more resistant to degradation until 16 h of incubation. From the SDS-PAGE patterns, acidic subunits of 15, 30 and 45 kGy ${\gamma}$-irradiated SB disappeared after 8, 8 and 16 h of incubation, respectively, while the basic subunits of glycinin were not degraded completely until 24, 48 and 48 h of incubation, respectively. It was concluded that ${\gamma}$-irradiated soybean proteins at doses higher than 15 kGy could be effectively protected from ruminal degradation.

Industrial Applications of Rumen Microbes - Review -

  • Cheng, K.J.;Lee, S.S.;Bae, H.D.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-92
    • /
    • 1999
  • The rumen microbial ecosystem is coming to be recognized as a rich alternative source of genes for industrially useful enzymes. Recent advances in biotechnology are enabling development of novel strategies for effective delivery and enhancement of these gene products. One particularly promising avenue for industrial application of rumen enzymes is as feed supplements for nonruminant and ruminant animal diets. Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. Cellulases, xylanases, ${\beta}$-glucanases, pectinases, and phytases have been shown to increase the efficiency of feedstuff utilization (e.g., degradation of cellulose, xylan and ${\beta}$-glucan) and to decrease pollutants (e.g., phytic acid). These enzymes enhance the availability of feed components to the animal and eliminate some of their naturally occurring antinutritional effects. In the past, the cost and inconvenience of enzyme production and delivery has hampered widespread application of this promising technology. Over the last decade, however, advances in recombinant DNA technology have significantly improved microbial production systems. Novel strategies for delivery and enhancement of genes and gene products from the rumen include expression of seed proteins, oleosin proteins in canola and transgenic animals secreting digestive enzymes from the pancreas. Thus, the biotechnological framework is in place to achieve substantial improvements in animal production through enzyme supplementation. On the other hand, the rumen ecosystem provides ongoing enrichment and natural selection of microbes adapted to specific conditions, and represents a virtually untapped resource of novel products such as enzymes, detoxificants and antibiotics.