• 제목/요약/키워드: physics simulation

검색결과 1,118건 처리시간 0.028초

터보 압축기 임펠러-디퓨저 운동장에 대한 정상상태 해석 (Steady Simulations of Impeller-Diffuser Flow Fields in Turbocompressor Applications)

  • 남삼식;박일영;이성룡;주병수;황영수;인배석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.405-412
    • /
    • 2005
  • Numerical and experimental investigations were conducted to assess the aerodynamic performance of several centrifugal compressors. In order to impose an appropriate physics at the interface between impeller and vaned diffuser numerically, two different techniques, frozen rotor and stage models, were applied and the simulation results were compared with the corresponding prototype test data. An equivalent sand-grain roughness height was utilized in the present computational study to consider a relative surface roughness effect on the stage performance simulated. From a series of investigations, it was found that the stage model is more suitable than the frozen rotor scheme for the steady interactions between impeller and diffuser in turbocompressor applications. It is supposed that the solution by frozen rotor scheme is inclined to overrate the non-uniformity of the flow fields. The predicted aerodynamic performance accounting for surface roughness effect shows favorable agreement with experimental data. Simulations based on the aerodynamically smooth surface assumption tend to overestimate the stage performance.

  • PDF

HPGe 검출기의 PENELOPE 전산모사에 의한 특성 분석 (A Germanium Detector Structure PENEL OPE Characteristic Analysis by Computer Simulation)

  • 장은성;장보석
    • 한국방사선학회논문지
    • /
    • 제9권2호
    • /
    • pp.73-77
    • /
    • 2015
  • 검출기의 자세한 구조를 알고자 CT 스캐닝을 하였으며 크리스털 형상과 사층에 관한 세부적인 구조를 전산모사 계산법을 이용해 재현하였다. 낮은 에너지의 감마선에 대한 피크 효율이 거리가 작아질수록 감소, 보다 높은 에너지(400 keV) 아상에서의 전체 효율성은 검출기 코어를 조정함으로써 불확도를 줄일 수 있었다. PENELOPE 계산법을 이용해 얻은 공간적 의존성 사이에 적절한 일치점이 달성되었음을 확인 하였다. 이는 크리스털 코어, 모서리와 크리스털 코어의 라운딩을 설명해 주는 매개변수들을 조정함으로써 달성되었다.

유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발 (Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method)

  • 최원;김한중
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

반발계수의 모델링과 동적 시스템의 충돌 분석으로의 적용 (Modelling of variable coefficient of restitution and its application to impact analysis of dynamic systems)

  • 류환택;최재연;권영헌;이병주
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.200-212
    • /
    • 2015
  • In classical dynamics, the coefficient of restitution is one of variables to estimate the amount of impulse. In general, we have considered the coefficient of restitution as a constant value. However, coefficient of restitution (COR) is the function of contact material and colliding velocity. Furthermore, COR is also a function of contact area. Thus, without considering the variable characteristic of COR, the actual motion of an object just after impact is not the same as we expect. A general COR model is proposed in this work and its effectiveness is verified through a cart impact experiment and its result is applied to simulation of a ball impact problem. A three-degree-of-freedom manipulator is employed as a test-bed.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분 시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발 (Developing a simulator for Super-RENS/ROM disk using finite difference time domain method)

  • 안덕원;유천열
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.32-37
    • /
    • 2005
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Reliability-Based Iterative Proportionality-logic Decoding of LDPC Codes with Adaptive Decision

  • Sun, Youming;Chen, Haiqiang;Li, Xiangcheng;Luo, Lingshan;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • 제17권3호
    • /
    • pp.213-220
    • /
    • 2015
  • In this paper, we present a reliability-based iterative proportionality-logic decoding algorithm for two classes of structured low-density parity-check (LDPC) codes. The main contributions of this paper include: 1) Syndrome messages instead of extrinsic messages are processed and exchanged between variable nodes and check nodes, which can reduce the decoding complexity; 2) a more flexible decision mechanism is developed in which the decision threshold can be self-adjusted during the iterative process. Such decision mechanism is particularly effective for decoding the majority-logic decodable codes; 3) only part of the variable nodes satisfying the pre-designed criterion are involved for the presented algorithm, which is in the proportionality-logic sense and can further reduce the computational complexity. Simulation results show that, when combined with factor correction techniques and appropriate proportionality parameter, the presented algorithm performs well and can achieve fast decoding convergence rate while maintaining relative low decoding complexity, especially for small quantized levels (3-4 bits). The presented algorithm provides a candidate for those application scenarios where the memory load and the energy consumption are extremely constrained.

Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves

  • Fasel, T.R.;Kennel, M.B.;Todd, M.D.;Clayton, E.H.;Park, G.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.329-344
    • /
    • 2009
  • Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations.

두 개의 피스톤음원으로부터 발생된 음향유동의 유속분포 해석 (Analysis of flow speed distribution in the acoustic streaming generated by two piston sources)

  • 김정순;정지희;김무준
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.400-405
    • /
    • 2020
  • 복수의 음향유동에 의해 형성되는 유속의 분포를 해석하기 위하여 동일한 두 개의 압전진동자로 구성된 초음파 트랜스듀서에 의해 형성되는 음향유동에 대해 음원 사이의 각도에 따른 음향유동속도의 분포를 조사하였다. 거리에 따른 유체입자속도의 분포를 측정하기 위하여 물과 동일한 밀도를 갖는 표시액을 사용한 간단한 측정방법을 제안하였다. 수치해석적인 방법으로 시뮬레이션한 결과와 실험결과는 유사한 경향을 나타내었으며, 두 음원으로부터 방사된 평면파의 방사빔이 교차하는 각도에 따른 음향유동의 속도 분포의 변화를 해석할 수 있었다.

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.