• Title/Summary/Keyword: physics simulation

Search Result 1,116, Processing Time 0.025 seconds

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin;Yong Cheng;Aihong Ji;Hongtao Pan;Yang Yang;Zhixin Yao;Yuntao Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.498-505
    • /
    • 2024
  • In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Numerical Simulation of Phase Separation in Bulk Hetero-junction Photoactive Layer

  • Hang, Nguyen Thi;Van Thuong, Dinh;Nhat, Hoang Nam;Van Chau, Dinh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Morphology evolution of the active layer in bulk hetero-junction organic photovoltaic is modeled and visualized. The width of the phase domain can be predicted using the relationship of characteristics length and evolution time of the process. The 3D numerical simulation of the PCBM/P3HT blend morphology evolution with respect to time is presented. It is observed that the domain width of composition phase can be predicted by using the relationship between value of characteristic length R(t) and evolution time t.

PIC simulation study of the turbulence of the Alfven ion-cyclotron waves induced by electromagnetic ion-cyclotron instability

  • Kaang, Helen H.;Ryu, Chang-Mo;Mok, Chinook;Rha, Ki-Cheol
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.29.3-29.3
    • /
    • 2011
  • The turbulence in the nonlinear regime of the electromagnetic ion-cyclotron (EMIC) instability are investigated via a particle-in-cell (PIC) simulation. EMIC instability arises from anisotropic ion temperature and excites the Alfven ion-cyclotron (AIC) waves. The excited AIC waves undergo inverse-cascade via the nonlinear wave interaction of two AIC and one ion density modes. Induced ion density modes are the normal and second harmonic ion-acoustic (IA) waves. They have the same group velocity, but the second harmonic IA mode only generates the longitudinal electric field.

  • PDF

Computational Science-based Research on Dark Matter at KISTI

  • Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • The Standard Model of particle physics was established after discovery of the Higgs boson. However, little is known about dark matter, which has mass and constitutes approximately five times the number of standard model particles in space. The cross-section of dark matter is much smaller than that of the existing Standard Model, and the range of the predicted mass is wide, from a few eV to several PeV. Therefore, massive amounts of astronomical, accelerator, and simulation data are required to study dark matter, and efficient processing of these data is vital. Computational science, which can combine experiments, theory, and simulation, is thus necessary for dark matter research. A computational science and deep learning-based dark matter research platform is suggested for enhanced coverage and sharing of data. Such an approach can efficiently add to our existing knowledge on the mystery of dark matter.

Study of Photonic Crystal Waveguide in Microwave Regime Using 3D FDTD Simulation (3차원 FDTD모사를 이용한 마이크로웨이브 영역에서의 광결정 도파로에 관한 연구)

  • Han, Seung-Ho;Park, Q-Han;Roh, Young-Geun;Heonsu leon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.184-185
    • /
    • 2003
  • Unlike the conventional waveguide such as optical fiber using total internal reflection, photonic crystal waveguide(PCW), a waveguide made of a line defect in a photonic crystal(PC) structure, does not admit an analytic approach due to its complexity but requires a direct numerical approach. Here, we present numerical results of computer simulation for PCW by using the three-dimensional(3D) Finite-Difference Time -Domain(FDTD) algorithm. (omitted)

  • PDF

Physical Properties of AuGe Liquid Metal Ion Implanted n-GaAs (AuGe 액체금속 이온이 주입된 n-GaAs의 물성연구)

  • Kang, Tae-Won;Lee, Jeung-Ju;Kim, Song-Gang;Hong, Chi-Yhou;Leem, Jae-Young;Chung, Kwan-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.63-70
    • /
    • 1989
  • The ion beam extracted from the AuGe liquid metal ion source was implanted into GaAs substrate. The surface composition and the structure of ion implanted samples were investigated by AES, RHEED, SEM and EPMA. The depth profiles measured by AES were compared with the results of Monte Carlo simulation based on the two-body collision. As the results of AuGe ion implantation the preferential sputtering of As were revealed by AES and EPMA, and the outdiffusion of Ga and Ge was investigated by 300$^{circ}C$ annealing. The Au and Ge depth profiles measured by AES agreed with the results of Monte Carlo simulation based on the two-body collision.

  • PDF

Machine-assisted Semi-Simulation Model (MSSM): Predicting Galactic Baryonic Properties from Their Dark Matter Using A Machine Trained on Hydrodynamic Simulations

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • We present a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. As an example, we use the IllustrisTNG hydrodynamic simulation of a (75 h-1 Mpc)3 volume to train our machine to predict e.g., stellar mass and star formation rate in a galaxy-sized halo based purely on its DM content. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements we introduce here such as a refined error function in machine training and two-stage learning. Aided by these improvements, our model demonstrates a significantly increased accuracy in predicting baryonic properties compared to prior attempts --- in other words, the machine better mimics IllustrisTNG's galaxy-halo correlation. By applying our machine to the MultiDark-Planck DM-only simulation of a large (1 h-1 Gpc)3 volume, we then validate the pipeline that rapidly generates a galaxy catalogue from a DM halo catalogue using the correlations the machine found in IllustrisTNG. We also compare our galaxy catalogue with the ones produced by popular semi-analytic models (SAMs). Our so-called machine-assisted semi-simulation model (MSSM) is shown to be largely compatible with SAMs, and may become a promising method to transplant the baryon physics of galaxy-scale hydrodynamic calculations onto a larger-volume DM-only run. We discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF

DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN (다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발)

  • Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.