• Title/Summary/Keyword: physics simulation

Search Result 1,141, Processing Time 0.035 seconds

Computational rock physics: Lattice-Boltzmann fluid flow simulation in porous media and its applications

  • Keehm, Young-Seuk;Mukerji, Tapan;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.661-668
    • /
    • 2003
  • This paper presents Lattice-Boltzmann simulation techniques for single-phase and two-phase fluid flow in porous media. Numerical experiments were performed in a digital rock sample from X-ray microtomography. Computed results showed very good agreement with laboratory measurements of permeability and relative permeability. Two applications using these simulation techniques show the potential of the Lattice-Boltzmann flow simulation to solve many difficult problems coupled with fluid flow in porous media.

  • PDF

Simulation of Luminance and Uniformity of LGP According to the Laser Scattering Pattern (레이저 가공 산란패턴의 유형에 따른 도광판의 휘도 및 균일도 향상에 관한 전산모사)

  • Park, So-Hee;Lee, Seung-Suk;Ma, Hye-Joon;Choi, Eun-Seo;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2010
  • Laser-induced scatterer patterns in a light guide panel(LGP) have provided partially concentrated light distribution, especially near the light entrance of the LGP. Additional treatments for enhancing performance of the LGP, such as gradually increased processing depth, were also developed, but minor improvement was observed in the fabricated LGP. To solve this problem, we designed a revised scatterer pattern to be inscribed into the LGP using different laser processing depths and different separation distances between patterns. Performance feasibility of the proposed pattern was analyzed with simulation before laser inscription in the LGP. The LGP inscribed with the proposed scatterer patterns contributes improvements in luminance and uniformity of the LGP.

Simulation of an X-ray Fresnel Zone Plate with Nonideal Factors

  • Chen, Jie;Fan, Quanping;Wang, Junhua;Yuan, Dengpeng;Wei, Lai;Zhang, Qiangqiang;Liao, Junsheng;Xu, Min
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Fresnel zone plates have been widely used in many applications, such as x-ray telescopes, microfluorescence, and microimaging. To obtain an x-ray Fresnel zone plate, many fabrication methods, such as electron-beam etching, ion-beam etching and chemical etching, have been developed. Fresnel zone plates fabricated by these methods will inevitably lead to some nonideal factors, which have an impact on the focusing characteristics of the zone plate. In this paper, the influences of these nonideal factors on the focusing characteristics of the zone plate are studied systematically, by numerical simulations based on scalar diffraction theory. The influence of the thickness of a Fresnel zone plate on the absolute focusing efficiency is calculated for a given incident x-ray's wavelength. The diffraction efficiency and size of the focal spot are calculated for different incline angles of the groove. The simulations of zone plates without struts, with regular struts, and with random struts are carried out, to study the effects of struts on the focusing characteristics of a zone plate. When a Fresnel zone plate is used to focus an ultrashort x-ray pulse, the effect of zone-plate structure on the final pulse duration is also discussed.

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.

When galaxies align: intrinsic alignments of the progenitors of elliptical galaxies in the Horizon-AGN simulation

  • James Bate;Nora Elisa Chisari;Sandrine Codis;Garreth Martin;Yohan Dubois;Julien Devriendt;Christophe Pichon;Adrianne Slyz
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.491 no.3
    • /
    • pp.4057-4068
    • /
    • 2020
  • Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data are currently insufficient to provide constraints on the time evolution of intrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive z = 0 elliptical galaxies, the main weak-lensing contaminant at low redshift. We show that this population, which at z = 0 has a stellar mass above 1010.4 M, transitions from having no alignment with the tidal field at z = 3, to a significant alignment by z = 1. From z = 0.5, they preserve their alignment at an approximately constant level until z = 0. We find a mass dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today (1010.4 < M/M < 1010.7) do not become aligned till later redshifts (z < 2), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition, and tidal field smoothing.

Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs

  • Son, Chang-Gyun;Yi, Jong-Hoon;Gwag, Jin-Seog;Kwon, Jin-Hyuk;Park, Gyeung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.272-277
    • /
    • 2011
  • The effect of the M-window color mixing bar on the characteristics of color mixing and hot spots in the edge-lit backlight employing red (R), green (G), blue (G) light emitting diodes (LED) were studied in terms of the structure of the M-window color mixing bar. The rays from RGB LEDs entering the M-window bar were mixed by internal reflection and scattering inside the M-window bar so that the hot spots and color separation were minimized. The M-window bar was designed and fabricated and the simulation results are matched quite well to experimental data.

Optical simulation of micro-pyramid arrays for the applications in the field of backlight unit of LCD

  • Lee, Ji-Young;Kim, Young-Jin;Nahm, Kie-Bong;Ko, Jae-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1343-1346
    • /
    • 2006
  • Optical performances of micro-pyramid arrays were simulated by ray tracing technique for the application of backlight unit of LCD. The angular distribution of the luminance and the on-axis luminance gain depended on the apex angle, the refractive index, and the density of micro-pyramids. The on-axis luminance reached a maximum when the apex angle was $90^{\circ}$. It also increased as the density and the refractive index of micro-pyramids increased. The present result showed that highly-efficient optical sheet might become realized by adopting micropyramid array and corresponding development of manufacturing processes.

  • PDF

The Efficient Motion Teaching Method of Quadruped Robot Using Graphic Simulator and Physics Engine (그래픽 시뮬레이터와 물리엔진을 이용한 효과적인 4족 보행로봇의 모션티칭 방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chan-Goo;Yi, Soo-Yeong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.156-158
    • /
    • 2009
  • A graphic simulator is efficient to see what will happen to the target robot. But it is not exactly same as the real world. Because there are so many physical laws to be concerned. In this paper, we propose a simulator with physics engine to create motions for quadruped robot. It is not only to show more real simulations but also to be more efficient for teaching motions to quadruped robot. To solve the quadruped robot's dynamics or inverse kinematics, It takes much times and hard effort. Using physics engine make it easy to setup motions without calculating inverse kinematics or dynamics.

  • PDF

A Study of Kinetic Effect on Relativistic Shock using 3D PIC simulation

  • Choi, Eun-Jin;Min, Kyoung-Wook;Choi, Cheong-Rim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Shocks are evolved when the relativistic jets in active galactic nuclei (AGNs), black hole binaries, supernova remnants (SNR) and gamma-ray bursts (GRBs) interact with the surrounding medium. The high energy particles are believed to be accelerated by the diffusive shock acceleration and the strong magnetic field is generated by Weibel instability in the shock. When ultrarelativistic electrons with strong magnetic field cool by the synchrotron emission, the radiation is observed in gamma-ray burst and the near-equipartitioned magnetic field in the external shock delays the afterglow emission. In this paper, we performed the 3D particle-in-cell (PIC) simulations to understand the characteristics of these relativistic shock and particle acceleration. Forward and reverse shocks are shaped while the unmagnetized injecting jet interacts with the unmagnetized ambient medium. Both upstream and downstream become thermalized and the particle accelerations are shown in each transition region of the shock structures.

  • PDF