• Title/Summary/Keyword: physicohemical property

Search Result 3, Processing Time 0.018 seconds

A Comparative Study of the Retrogradation and Rheology of Backsulgi with Nutriprotein and Gelatinized Rice Powder (백설기에 제조한 고단백식품과 호화한 쌀가루를 첨가하여 노화지연 및 물성 대한 비교연구)

  • 오미향
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.4
    • /
    • pp.370-378
    • /
    • 2004
  • The purpose of this study was to investigate the effect of added nutriprotein and rice powder as a plasticizer on physicohemical property, texture property of Backsulgi. In the physicochemical property, the content of proximate composition of nutriprotein was measured as 6.1% of moisture, 3.6% of carbohydrate, 84.3% of crude protein, 0.6% of crude lipid, 5.4% of ash. The raw material of rice powder was measured as 9.6% of moisture, 83.7% of carbohydrate, 6.0% of crude protein, 0.4% of crude lipid, 0.3% of ash. Swelling power and pore ratio of the control were 78.53% and 72.42%, and tended to increase as the amounts of nutriprotein and plastic rice powder increased. Aging by Avrami eguation retarded in Backsulgi added 10% plastic rice powder than rice powder Backsulgi. All the samples added 2, 4, 6, and 8% nutriprotein at the temperatures of 20 were more effective than others on aging. In texture properties, cohesiveness and springiness were not significantly changed by adding nutriprotein and not significantly changed during the storage period in all samples. Hardness and gumminess decreased by adding 2∼8% nutriprotein and increased during the storage period in all samples. Springiness and gumminess decreased by adding 40% plastic rice powder and increased during the storage period in all sample. Cohesiveness and hardness decreased by the increase of plastic rice powder. The texture characteristics by rheometer showed that Backsulgi with nutriprotein and plastic rice powder exhibited lower in hardness than the control, indicating that nutriprotein and plastic rice powder were effective in retarding retrogradation, which is better when storage time became longer.

  • PDF

Varietal Variations in Physicochemical Characteristics and Amylopectin Structure of Grain in Glutinous Rice

  • Choi, Hae-Chune;Hong, Ha-Cheol;Kim, Yeon-Gyu;Nahm, Baek-Hie
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.207-213
    • /
    • 1999
  • Thirty-eight glutinous rice varieties were classified into nine groups on the scatter diagram by the upper two principal components (56% contribution to the total information) based on eleven physicochemical characteristics including the viscograms and physical properties of cooked rice. The first principal component was the factor mainly associated with the viscogram characteristics of rice flour emulsion and the second was the factor chiefly related to the physical properties of cooked rice and water absorbability of rice grain. Indica glutinous rices were clearly distinguished from japonica ones by the first principal component score. Javanica glutinous rices were widely distributed on the intermediate zone between indica and japonica or on several japonica rice groups. Significant positive or negative correlations were found among water absorption rates of rice grain, physical properties of cooked rice, and viscogram characteristics of rice flour. Especially in japonica glutinous rices, the breakdown and setback viscosities of rice flour were closely associated with the alkali digestion value of milled rice and the stickiness of cooked rice. The frequency ratio of short glucose chains (A-chain) to intermediate glucose chains (B-chain), the ratio of B- chains to long glucose chains (C-chain) and the relative frequency of A- or B-chain fractions representing the amylopection structure of rice starch was closely associated with the breakdown and setback viscosities of rice flour.

  • PDF

Physicohemical Properties of Extruded Rice Flours and a Wheat Flour Substitute for Cookie Application (압출쌀가루의 이화학적 특성 및 밀가루 대체 쿠키 특성)

  • We, Gyoung Jin;Lee, Inae;Kang, Tae-Young;Min, Joo-Hong;Kang, Wie-Soo;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.404-412
    • /
    • 2011
  • The purpose of this study is to prepare extruded rice flours suitable for baking rice cookies. The extruded rice flours were prepared at 100 and 130$^{\circ}C$ temperature and 25 and 27% moisture content in a co-rotating twin screw extruder. The rice extrudates were dried at 100$^{\circ}C$ for 18 hr and subsequently ground into the fine flour. Characteristics of the extruded rice flours were examined by rapid visco analysis, hydration property analysis, differential scanning calorimetry (DSC), and in vitro digestion test. Water absorption, solubility, and swelling power of all extruded rice flours were higher than those of native rice flour. DSC analysis showed that native rice flour had a peak at about 65$^{\circ}C$ while all extruded rice flours did not show any peaks since they were already gelatinized during the extrusion proess. Viscosity of the extruded rice flours decreased with increasing temperature and lowering moisture content in the extrusion proess. The extruded rice flours prepared at 130$^{\circ}C$ exhibited lower viscosity than those prepared at 100$^{\circ}C$. The operating temperature of the extrusion proess was critical for the starch digestion in vitro. The extruded rice flours prepared at 130$^{\circ}C$ showed a rapid decrease in digestible starch content while an increased level of slowly digestible starch content was observed compared to those treated at 100$^{\circ}C$ in the extruder. Cookies were prepared with a mixture of wheat flour and extruded rice flours at the ratio of 7 to 3. The cookies made with the extruded rice flours had lower spread factor and darker yellow color than those prepared with wheat flour only. Hardness of the extruded rice flour-added cookies was similar to that of the wheat flour cookie whereas their overall acceptance was better. Therefore the rice cookies partially supplemented with extruded rice flours may have a potential as early childhood foods which require soft texture and allergy reduction.