• Title/Summary/Keyword: physical-mechanical

Search Result 3,388, Processing Time 0.024 seconds

A Study on the Mechanical Press Joining of Double Sheet Metals Using Physical Modeling (물리적 모델링법을 이용한 이중 박판의 기계적 접합 공정에 관한 연구)

  • Kwon, S.O.;Kim, B.J.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.107-112
    • /
    • 2007
  • In this study, the mechanical joining process for double sheet metals was investigated by using physical modeling method. Process parameters of mechanical joining such as friction coefficient, drawing depth, pouch radius, die radius and material thickness are preliminarily analyzed by finite element method. Referring to the finite element analysis results mechanical joining system is designed on the basis of physical similarities. From the physical modeling test, the effect of process parameters on the deformation for the mechanical joining are experimentally investigated and optimized joining shape that can provide strong joining strength is obtained.

Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

  • HADI, Yusuf Sudo;HERLIYANA, Elis Nina;PARI, Gustan;PARI, Rohmah;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.46-58
    • /
    • 2022
  • Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

Changes of Physical and Mechanical Properties of Firefighter Protective Clothing After Radiant Heat Exposure (노출시간과 열강도에 따른 복사열 노출후의 소방보호복의 물리적 특성과 역학적 특성변화)

  • ;N.Pan;G.Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.853-863
    • /
    • 1999
  • the change of physical properties (thickness, weight, air permeability) and mechanical properties(abrasion resistance breaking load and displacement) of samples were determined after heat exposure by a RPP tester. The effect of exposure time and heat flux intensity on the changes and the relationship between physical properties and mechanical properties were investigated. FR treated cotton Kevlar/PBI and Nomex with different structureal characteristics were chosen for specimens. The changes of physical properties and mechanical properties were calculated based on their initial values before heat exposure. The longer exposure time and the high heat flux intensity the more changes of those properties. Heat flux intensity was more effective on the changes, The showed to be affected by an interplay of shrinkage and pyrolysis products loss. The changes of thickness and abrasion resistance showed to be higher for plain weave fabric and those of air permeabiliyt and breaking load and displacement for twill weave fabric. While FR treated cotton which have high RPP value experienced serious and detrimental changes after heat exposure Kevlar/PBI which has low RPP value showed no high changes. In conclusion it could be confirmed that when total performance of a protective clothing is estimated retention capability of physical and mechanical properties after heat exposure as well as RPP value must be considered.

  • PDF

A Study on the Physical and Mechanical Properties of Some Major Northern Soft woods and Hardwoods (북양산(北洋産) 주요(主要) 침(針), 활엽수재(闊葉樹材)의 재질(材質)에 관(關)한 연구(硏究))

  • Park, Jong-Su;Kim, Su-Chang
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 1993
  • The study was carried out to investigate the physical (Density, Percentage of latewood, Percentage of pore zone, Mean annual ring width) and mechanical (Compressive strength parallel to the grain, Compression perpendicular to the grain, Shearing strength) properties of some major northern softwoods and hardwoods. The physical and mechanical properties of each species are summerized as Table 2 and the relationship between physical and mechanical factors are discussed. The results of this study were as follows: Density and percentage of latewood are closely related to physical and mechanical properties, but percentage of pore zone and mean annual ring width are remotely related to physical and mechanical properties.

  • PDF

The Effects of Mechanical Horseback Riding Exercise on the Dynamic Balance in Patients with Cerebral Infarction (승마기구 운동이 뇌경색 환자의 동적균형에 미치는 영향)

  • Choi, Ah-Young;Cho, Woon-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • Purpose: The purpose of this study was to determine the effect of mechanical horseback riding exercise on dynamic balance in patients with cerebral infarction. Methods: The subjects of this study were 30 cerebral infarction patients. Subjects in the control group received physical therapy for 45 minutes, three times per week, and those in the experimental group received mechanical horseback riding exercise for 30 minutes, three times per week, with physical therapy for 45 minutes, three times per week, during a period of six weeks. For evaluation of dynamic balance ability, limit of stability (LOS) was measured and TUG test was performed. Results: According to the test result, LOS showed a significant increase after the exercise, and TUG showed a significant decrease after the exercise. However, no significant correlation was observed between LOS difference and TUG difference. Conclusion: Mechanical horseback riding exercise is effective for improvement of dynamic balance in patients with cerebral infarction. Mechanical horseback riding exercise is a useful indoor exercise program for clinical use for improvement of dynamic balance.

Physical and Mechanical Properties of Particleboard made with Powdered Tannin Adhesives (분말상 탄닌수지로 제조한 PB의 물리.기계적 특성)

  • 강석구;이화형
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2003
  • This study was carried out to determine the mechanical and physical properties of particle boards glued with condensed tannin (Wattle Tannin) powder that was single-molecule phenolic compounds like powdered phenolic resin. Our findings are; 1) It is necessary to spray water on the chip surfaces for effective application of powdered -form tannin resin. It shows that the best and optimum mat moisture increase is 14% of water spray on the surface of chips for developing PB properties. 2) In general, for both liquid and powdered tannin adhesives, their physical and mechanical properties has been proportional to the increase of resin level. But, the most efficient addition ratio is 16% of resin on dry basis. Specially, it is found that the resin level influences on the amount of free formaldehyde emission. The higher the resin level is, the lower the emission is. These phenomena seem to result from the increase of hexamine or formaline in the adhesives used as a hardener, that reduce the free-formaldehyde amount by reaction of tannin of poly-molecule and water. 3) The optimum condition for manufacturing PBs is the condition of hexamine of 5% and formaline of 6% in mechanical and physical properties. Hexamine is superior to formaline in mechanical and physical properties along with the control of the free formaldehyde emission amount. The result of NaOH's addition is insignificant in all experiments of both mechanical and physical properties.

  • PDF

Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

  • Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Zaini, Lukmanul Hakim;Pari, Rohmah
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.324-335
    • /
    • 2019
  • Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.

Fuzzy Preference Based Interactive Fuzzy Physical Programming and Its Application in Multi-objective Optimization

  • Zhang Xu;Huang Hong-Zhong;Yu Lanfeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.731-737
    • /
    • 2006
  • Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer.

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Cervical Range Of Motion Changes After Cervical Mobilization And Mechanical Traction (경추의 도수치료와 기계적 견인이 경추 가동범위에 미치는 영향)

  • Kim Hyoung-Soo;Ahn Mock;Hyoung In-Hyouk;Kim Eun-Young;Lee Hae-Jung;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.4
    • /
    • pp.283-296
    • /
    • 2004
  • Joint mobilization and mechanical traction are common treatment forms for mechanical cervical spine problem. The purpose of the study was to investigate the effectiveness of cervical mobilization and mechanical traction on active range of motion of cervical spine. Sixty volunteers, aged between 21 and 24 years (mean age 22), were recruited. Each subject was divided into one of three groups; mechanical traction, general coordinative manipulation, and mobilization group. Active range of motions in the cervical were measured before and after each treatment technique from each subject on the three occasions. In the cervical range of motion, all subjects regardless treatment technique showed significantly increasing ranges after applied treatment technique in all directions except extension and left rotation in the mobilization group.

  • PDF