• Title/Summary/Keyword: physical neutral surface

Search Result 81, Processing Time 0.032 seconds

The Effects of Storage Conditions on the Stability of Porcine Placenta Extract-loaded Liposome Formulations

  • Noh, Sang-Myoung;Park, Da-Eui;Im, Sae-Won;Kim, Sun-Il;Kim, Young-Bong;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.187-192
    • /
    • 2010
  • We aimed to evaluate the effect of temperature, pH, and light conditions on the stability of porcine placental extract (PPE)-loaded liposomes with different surface charges. The size distribution profiles and in vitro release patterns were investigated by dynamic light scattering method and spectrophotometry. The stability of PPE-loaded liposomes was affected by the surface charges of the liposomes. As compared to neutral and anionic liposomes, cationic liposome formulations showed significantly lower physical stability. At the test storage conditions of different temperatures and pHs, the mean sizes of cationic PPE-loaded liposomes substantially increased. In contrast, neutral and anionic liposomes did not reveal significant changes in mean sizes upon various storage conditions. The neutral and anionic liposomes showed no significant differences in the release profiles of PPE after storage at various temperatures and pHs. Our results indicate that anionic and neutral liposome compositions might be more suitable for the formulations of PPE providing the higher stability.

Influence of Head-Neck Rotation on Elbow Flexor and Extensor Muscle Activity and Strength in Normal Adults

  • Nam, Seung-Min;Kim, Seong-Gil
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.325-328
    • /
    • 2020
  • Purpose: This study examined the effects of the directions of neck rotation position on the muscle activity and strength of the elbow flexor and extensor muscle. Methods: Forty-one healthy adults participated in this study. The subjects were asked to their elbow 90° flexion in three different neck rotations (neutral, ipsilateral, and contralateral) in the sitting position. The muscle activities of the biceps and triceps brachii muscle were measured using surface electromyography. And the muscle strength of the elbow flexor was measured using dynamometer. One way repeated measures ANOVA was used to compare the muscle activity and strength of the elbow flexor and extensor depending on the different neck turning directions. Results: There were significant differences between contralateral neck rotation and ipsilateral neck rotation, contralateral neck rotation and neutral position. But, there was no significant difference in the triceps brachii muscle activity in comparison with the neck rotation. There were significant differences between contralateral neck rotation and ipsilateral neck rotation, contralateral neck rotation and neutral position. Conclusion: To summarize this study, the elbow flexor and extensor muscle activity and strength was highest in the contralateral neck rotation position. In other words, it was possible to confirm the effect of Asymmetrical Tonic Neck Reflex in healthy adults whose primitive reflexes were inhibition, and head and neck positions should be considered during clinical evaluation and treatment.

Tibial Rotation Influences Muscle Activity and Motion of Lower Extremity during The Stair Ascent (계단 오르기 시 정강이뼈 돌림이 하지의 역학과 근 활성도에 미치는 영향)

  • Kang, Jeong-Il;Lee, Yu-Kyung;Park, Seung-Kyu;Lee, Joon-Hee;Yang, Dae-Jung;Choi, Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.467-477
    • /
    • 2011
  • This study was performed to investigate the effects of tibial rotation while going up stair on muscle activity of vastus medialis oblique and vastus lateralis, and on patellar displacement. The subjects included 30 people (male: 15; female: 15) who were randomly assigned to the tibial internal-rotation, neutral-rotation, and external-rotation groups. The subjects went up the stair while performing the assigned rotations, and the rotation of the hip and the displacement of the patella were measured using a 3D motion analyzer. In addition, the maximum voluntary isometric contraction (MVIC) of the vastus medialis oblique and vastus lateralis were measured using surface electromyogram. On the tibial internal rotation, the hip rotation significantly appeared in the same direction and so did on the tibial neutral and external rotations(p<.001). Although the MVIC of the vastus medialis oblique and vastus lateralis did not significantly differ by tibial rotation during the stair ascent, the MVIC of the vastus medialis oblique was higher than that of the vastus lateralis during the internal and neutral rotations (p<.05). In addition, during the stair ascent, the displacement of the patella was more significant during the tibial external rotation than during the tibial internal and neutral rotations(p<.001). Thus, patients with patellofemoral pain are required to be considered the effects of tibial rotation for their rehabilitation.

Comparison of Infraspinatus and Posterior Deltoid Muscle Activities According to Exercise Methods and Forearm Positions During Shoulder External Rotation Exercises (어깨 가쪽돌림 운동 시 운동방법과 아래팔의 자세에 따른 가시아래근과 뒤어깨세모근의 근활성도 비교)

  • Son, Myeong-gi;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.106-116
    • /
    • 2022
  • Background: Shoulder external rotation exercises are commonly used to improve the stabilizing ability of the infraspinatus. However, during exercise, excessive activation of the posterior deltoid compared to the infraspinatus causes the humeral head to move anteriorly in an abnormal position. Many researchers have emphasized selective activation of the infraspinatus during shoulder external rotation exercise. Objects: This study aims to delineate the optimal exercise method for selective activation of infraspinatus by investigating the muscle activities of the infraspinatus and posterior deltoid according to the four shoulder exercise methods and two forearm positions. Methods: Thirty healthy individuals participated in this study. The participants were instructed to perform shoulder external rotation exercises following four exercise methods: sitting external rotation (SIER); standing external rotation at 90° abduction (STER); prone external rotation at 90° abduction (PRER); side-lying external rotation (SLER), and two forearm positions (neutral, supinated). The electromyography (EMG) signal amplitude was measured during each exercise. Surface EMG signals were recorded from the posterior deltoid, infraspinatus, and biceps brachii. Results: EMG results of the infraspinatus and posterior deltoid in PRER, were significantly higher than that of the other exercises (p < 0.01). The EMG ratio (infraspinatus/posterior deltoid) in SIER was significantly higher than that of the other exercises. EMG activation of the posterior deltoid in SIER, PRER, and SLER was significantly higher in neutral than in supinated (p < 0.01). Furthermore, the EMG of the infraspinatus in SIER was significantly higher in neutral than in supinated (p < 0.01). The EMG ratio (infraspinatus/ posterior deltoid) in SIER was significantly higher in neutral than in supinated (p < 0.05.) Contrarily EMG ratios in PRER and SLER were significantly higher in supinated than in neutral (p < 0.05). Conclusion: The results show that clinicians should consider these exercise methods and forearm positions when planning shoulder external rotation exercises for optimal shoulder rehabilitation.

The Effect of Various Wheelchair Handle Directions on Muscle Activity of Adult Male Trunks When Climbing Ramps

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.379-389
    • /
    • 2019
  • Purpose: This study examined the effects of wheelchair handle directions on the trunk muscle activity of adult males when climbing ramps. It also evaluated the wheelchair attendant's physical discomfort during tasks. Methods: Healthy males aged over 20 years were chosen and the direction of wheelchair handle grip was randomly selected. The grips included a general grip with ulnar deviation, a medial grip with wrist pronation, and a neutral grip with a neutral wrist. The trunk muscle activity was measured using surface electromyography. Furthermore, the physical discomfort of wheelchair attendants was subjectively evaluated using the Borg CR-10 Scale, which rates the perceived exertion. In addition, the SPSS 18.0 program was used perform repeated measure ANOVA to compare muscle activity and subjective discomfort during the interventions. The contrast test was also conducted with a significance level (α) of 0.05. Results: There was significant difference between the general grip and the medial grip in the rhomboid major muscle and the lumbar erector spinae muscle (p<0.05). In addition, there was significant difference between the general grip and the neutral grip in the rhomboid major muscle and the lumbar erector spinae muscle (p<0.05). Further, there was significant difference between the general grip and the neutral grip in subjective discomfort (p<0.05). Conclusion: In this study, adult male trunk muscle activity and subjective discomfort were lowest when using the neutral grip while climbing ramps. Accordingly, we suggest that neutral grips will help improve the function of the musculoskeletal system and reduce the subjective discomfort by putting less strain on the trunk muscles and maximizing efficiency with less force.

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

Effect of changes in head postures during use of laptops on muscle activity of the neck and trunk

  • Lee, Seulgi;Lee, Yeseb;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Objective: This study tried to examine the muscle activity of the neck and trunk according to head posture changes during use of laptops. Design: Cross-sectional study. Methods: This study included nineteen young men and women. All subjects maintained each posture while practice typing on laptops for ten minutes with a 5-minute break between each posture. For the neutral head posture, the subjects practiced typing while pulling their chins down towards the Adam's apple and were able to look at their knees while having their external auditory meatus, acromion, and greater trochanter vertical to the ground. For the natural head posture, they practiced typing while balancing their posture between extension and flexion of the cervical vertebrae by themselves without any guidelines. While a forward head posture was created by having their heads face the front horizontal to the rope hanging from the ceiling, they practiced typing with their external auditory meatus located in the place which was 5 cm in front of the vertical plane. The subjects used general word process but practiced typing with accuracy and high speed. Muscle activities were randomly measured using surface electromyography according to each postures. Results: The research result had found that muscle activity with the natural head posture was more significantly reduced than that of the forward head posture in the sternocleidomastoid muscle, upper trapezius, cervical vertebral spinae, and thoracic vertebrae spinae muscles (p<0.05) and that the neutral head posture was more significantly reduced than that of forward head posture in the upper trapezius, cervical vertebral spinae, and thoracic vertebrae spinae muscle activity (p<0.05) with significant increases in lumbar spinae muscle activity (p<0.05). Also, muscle activity with the neutral head posture significantly increased more in the sternocleidomastoid muscle and lumbar spinae than that of the natural posture (p<0.05). Conclusions: Our study results suggest that in order to prevent musculoskeletal pain, the neutral head posture with use of laptops is effective in reducing load to the shoulders and vitalizing the postural muscles.

Effects of Hand Positions on Electromyographic Activity in Scapulothoracic Muscles During Push-Up Plus

  • Yoon, Ji-Yeon;Kim, Tae-Hoon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2010
  • This study was designed to investigate the effect of different hand positions on scapulothorcic muscle activities during push-up plus exercises. Fourteen healthy males performed push-up plus exercises under three conditions (neutral, $90^{\circ}$ internally rotated, and $90^{\circ}$ externally rotated hand positions), during which the activities of the serratus anterior, pectoralis major, and upper trapezius muscles were recorded using surface electromyography. The statistical significance at three different hand positions was tested by repeated one-way ANOVA. The mean activities of the serratus anterior increased and the mean activities of the pectoralis major decreased in the order of neutral hand position, internally rotated hand position, and externally rotated hand position. There was a significant difference during push-up plus between neutral and externally rotated hand positions as well as in the serratus anterior/pectoralis major activity ratio (p<.0.5). However, no significant differences were found in the activity of the upper trapezius muscle or the serratus anterior/upper trapezius activity ratio. We suggest that the push-up plus exercise performed in the externally rotated hand position could a beneficial strategy for selective strengthening of the serratus anterior muscle, while minimizing the activity of the pectoralis major muscle.

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.